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Chapter 1

Introduction

One goal of the lecture is to study stochastic differential equations (SDE’s).
So let us start with a (hopefully) motivating example: Assume that Xt is
the share price of a company at time t ≥ 0 where we assume without loss
of generality that X0 := 1. To get an idea of the dynamics of X let us
consider the relative increments (these are the increments which are relevant
in financial markets)

Xt+∆ −Xt

Xt

∼ b∆ + σYt,∆

with b ∈ R, σ > 0, and ∆ > 0 being small. Here b∆ describes a general
trend and σYt,∆ some random events (perturbations). Asking several people
about this approach we probably get answers like that:

• Statisticians: the random variables Yt,∆ should be centered Gaussian
random variables.

• Mathematicians: the perturbations should not have a memory, other-
wise the problem gets too difficult. Hence Yt,∆ is independent from
Xt.

• Then, in addition, probably both of them agree to assume that the
perturbations behave additively, that means

Yt,∆ = Yt,∆
2

+ Yt+ ∆
2
,∆

2

so that var(Yt,∆) = ∆ is a good choice.
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6 CHAPTER 1. INTRODUCTION

An approach like this yields to the famous Black-Scholes option pricing
model. Is it possible to make out of this a correct mathematical theory? Yes
it is, if we proceed for example in the following way:

Step 1: The random variables Yt,∆ will be replaced by a continuous time
stochastic process W = (Wt)t≥0, called Brownian motion, such that

Yt,∆ = Wt+∆ −Wt.

Consequently, we have to introduce and study the Brownian motion.

Step 2: Our formal equation reads now as

Xt+∆ −Xt ∼ (bXt)∆ + (σXt)(Wt+∆ −Wt)

with X0 = 1 which looks nicer. Letting ∆ ↓ 0 we hope to get a stochastic
differential equation

dXt = bXtdt+ σXtdWt

we are able to explain. To this end we introduce stochastic integrals to be
in a position to write the differential equation as an integral equation

Xt = X0 +

∫ t

0

bXudu+

∫ t

0

σXudWu.

Step 3: We have to solve this equation. In particular we have to study
whether the solutions are unique and to find possible ways to obtain them.

Before we proceed, we give some historic data about groundbreaking work
of Kiyoshi Itô and Wolfgang Döblin.

1.0.1 Wolfgang Döblin

Wolfgang Döblin was born in Berlin in 1915 as the son of the famous German
writer Alfred Döblin. Since Döblins were Jewish, in 1933 they had to flee from
Berlin and take refugee in Paris. There Wolfgang made a strong impression
with his skills in maths, and during his short career he published 13 papers
and 13 contributions. Fréchet was his adviser, and Döblin also got in touch
with Paul Lévy, with whom he wrote his first note. He received his PhD in
1938, but in 1939 he was called up for front service in WWII. In February
1940 Döblin sent his work on diffusions to the Academie des Sciences in
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Paris. In June the same year, he decided to take his own life as Nazi troops
were just minutes away from the place where he was stationed. In May 2000
his sealed letter was finally opened, and it contained a manuscript called
”On Kolmogorov’s equation”. The manuscript caused a sensation among
mathematicians; Wolfgang Döblin had developed a result comparable with
the famous Itô’s formula, which was published by Itô in 1951.

1.0.2 Kiyoshi Itô

Kiyoshi Itô was born in 1915 in Japan. He studied in the Faculty of Science of
the Imperial University of Tokyo, from where he graduated in 1938. The next
year he was appointed to the Cabinet Statistics Bureau. He worked there
until 1943 and it was during this period that he made his most outstanding
contributions, for example Itô’s famous paper On stochastic processes was
published in 1942. This paper is seen today as fundamental, but Itô would
have to wait several years before the importance of his ideas would be fully
appreciated. In 1945 Itô was awarded his doctorate. He continued to de-
velope his ideas on stochastic analysis, and in 1952 he was appointed to a
Professorship at Kyoto University. In the following year he published his
famous text Probability theory. In this book, Ito develops the theory of a
probability space using terms and tools from measure theory. Another im-
portant publication by Itô was Stochastic processes in 1957, where he studied
among others Markov processes and diffusion processes. Itô remained as a
professor at Kyoto University until he retired in 1979, and continued to write
research papers even after his retirement. He was awarded the Wolf prize in
1987, and the Gauss prize in 2006. Kiyoshi Itô died in Kyoto in 10.11.2008.
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Chapter 2

Stochastic processes in
continuous time

2.1 Some definitions

In this section we introduce some basic concepts concerning continuous time
stochastic processes used freely later on. Let us fix a probability space
(Ω,F ,P) and recall that a map Z : Ω → R is called a random variable
if Z is measurable as a map from (Ω,F) into (R,B(R)) where B(R) is the
Borel σ-algebra on R.

What is a continuous time stochastic process? For us it is simply a family
of random variables:

Definition 2.1.1. Let I = [0, T ] for some T ∈ (0,∞) or I = [0,∞). A
family of random variables X = (Xt)t∈I with Xt : Ω→ R is called stochastic
process with index set I.

The definition of a stochastic process can be given more generally by
allowing more general I and other state spaces than R. In our case there are
two different views on the stochastic process X:

(1) The family X = (Xt)t∈I describes random functions by

ω → f(ω) = (Xt(ω))t∈I .

The function f(ω) = (t→ Xt(ω)) is called path or trajectory of X.

9
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(2) The family X = (Xt)t∈I describes a process, which is, with respect to the
time variable t, an ordered family of random variables t→ Xt.

The two approaches differ by the roles of ω and t. Next we ask, when do
two stochastic processes X and Y coincide? It turns out to be useful to have
several ’degrees of coincidence’ as described now.

Definition 2.1.2. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes
on (Ω,F ,P). The processes X and Y are indistinguishable if and only if

P(Xt = Yt, t ∈ I) = 1.

It should be noted that the definition automatically requires that the set
{ω ∈ Ω : Xt(ω) = Yt(ω), t ∈ I} is measurable which is not the case in general
as shown by the

Example 2.1.3. Let I = [0,∞), Ω = [0, 2), Yt = 0,

Xt(ω) :=


0 : ω ∈ [0, 1]
0 : ω ∈ (1, 2), t 6= ω
1 : ω ∈ (1, 2), t = ω

,

and F := σ(Xt : t ≥ 0) = σ({t} : t ∈ (1, 2)). But

{ω ∈ Ω : Xt(ω) = Yt(ω), t ≥ 0} = [0, 1] 6∈ F .

Another form of coincidence is the following:

Definition 2.1.4. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes
on (Ω,F ,P). The processes X and Y are modifications of each other provided
that

P(Xt = Yt) = 1 for all t ∈ I.

Up to now we have to have that the processes are defined on the same
probability space. This can be relaxed as follows:

Definition 2.1.5. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes
on (Ω,F ,P) and (Ω′,F ′,P′), respectively. Then X and Y have the same
finite-dimensional distributions if

P((Xt1 , . . . , Xtn) ∈ B) = P′((Yt1 , . . . , Ytn) ∈ B)

for all 0 ≤ t1 < . . . < tn ∈ I, where n = 1, 2, . . . and B ∈ B(Rn).
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Proposition 2.1.6. (i) If X and Y are indistinguishable, then they are
modifications of each other. The converse implication is not true in
general.

(ii) If X and Y are modifications from each other, then they have the same
finite-dimensional distributions. There are examples of stochastic pro-
cesses defined on the same probability space having the same finite-
dimensional distributions but which are not modifications of each other.

Proof. (i) Fixing t ∈ I we immediately get that

P(Xt = Yt) ≥ P(Xs = Ys, s ∈ I) = 1.

To construct a counterexample for the converse implication let I = [0,∞)
and S : Ω→ R be a random variable such that S ≥ 0 and P(S = t) = 0 for
all t ≥ 0. Define Xt := 0 and

Yt(ω) :=

{
0 : t 6= S(ω)
1 : t = S(ω)

= χ{S(ω)=t}.

The map Yt is a random variable and

P(Xt = Yt) = P(0 = Yt) = P(S 6= t) = 1,

but

{ω ∈ Ω : Xt(ω) = Yt(ω), t ≥ 0} = {ω ∈ Ω : 0 = Yt(ω), t ≥ 0} = ∅.

(ii) Let Nt := {Xt 6= Yt} so that P(Nt) = 0. Then, for B ∈ B(Rd),

P((Xt1 , ..., Xtn) ∈ B) = P({(Xt1 , ..., Xtn) ∈ B} \ (Nt1 ∪ · · · ∪Ntn))

= P({(Yt1 , ..., Ytn) ∈ B} \ (Nt1 ∪ · · · ∪Ntn))

= P((Yt1 , ..., Ytn) ∈ B).

For the counterexample we let Ω = [0, 1] and P be the Lebesgue measure on
[0, 1]. We choose Xt = X0, Yt = Y0, X0(ω) := ω, and Y0(ω) := 1− ω.

There are situations in which two processes are indistinguishable when
they are modifications of each other.
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Proposition 2.1.7. Assume that X and Y are modifications of each other
and that all trajectories of X and Y are left-continuous (or right-continuous).
Then the processes X and Y are indistinguishable.

Proof. In both cases we have that

A := {Xt = Yt, t ∈ I} = {Xt = Yt, t ∈ Q ∩ I}

so that A ∈ F and

P(A) = P(Xt = Yt, t ∈ Q ∩ I)

= 1− P(Xt 6= Yt for some t ∈ Q ∩ I)

≥ 1−
∑
t∈Q∩I

P(Xt 6= Yt)

= 1.

We also need different types of measurability for our stochastic processes.
First let us recall the notion of a filtration and a stochastic basis.

Definition 2.1.8. Let (Ω,F ,P) be a probability space. A family of σ-
algebras (Ft)t∈I is called filtration if Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t ∈ I. The
quadruple (Ω,F ,P, (Ft)t∈I) is called stochastic basis.

The different types of measurability are given by

Definition 2.1.9. Let X = (Xt)t∈I , Xt : Ω → R be a stochastic process on
(Ω,F ,P) and let (Ft)t∈I be a filtration.

(i) The process X is called measurable provided that the function (ω, t)→
Xt(ω) considered as map between Ω × I and R is measurable with
respect to F ⊗ B(I) and B(R).

(ii) The process X is called progressively measurable with respect to a
filtration (Ft)t∈I provided that for all S ∈ I the function (ω, t)→ Xt(ω)
considered as map between Ω× [0, S] and R is measurable with respect
to FS ⊗ B([0, S]) and B(R).
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(iii) The process X is called adapted with respect to a filtration (Ft)t∈I
provided that for all t ∈ I one has that Xt is Ft-measurable.

Proposition 2.1.10. A process which is progressively measurable is measur-
able and adapted. All other implications between progressively measurable,
measurable, and adapted do not hold true in general.

Proof. (a) Here only the case I = [0,∞) is of interest. Assume that X is
progressively measurable. We show that X is measurable as well. Given
n = 1, 2, ... we have that Xn : Ω × [0, n] → R given by Xn(ω, t) := Xt(ω) is
measurable with respect to Fn⊗B([0, n]) by assumption. Hence the extension

X̃n : Ω× [0,∞)→ R given by

X̃n(ω, t) := Xt∧n(ω)

is measurable with respect to Fn ⊗ B([0,∞)) and henceforth with respect

to F ⊗ B([0,∞)). This can be checked considering X̃n = Xn ◦ Jn with
Jn : Ω× [0,∞)→ Ω× [0, n] given by

Jn(ω, t) := (ω, t ∧ n).

Finally we observe that

Xt(ω) = lim
n→∞

Xt∧n(ω)

and get that X is F ⊗ B([0,∞))-measurable as a limit of measurable map-
pings.

(b) Fix t ∈ I. Then X t : Ω × [0, t] → R is measurable with respect
to Ft ⊗ B([0, t]) by assumption. Then Fubini’s theorem gives that Xt is
Ft-measurable.

(c) Let I = [0,∞), B ⊆ [0,∞) be a non-measurable set, and define
Xt := 1 if t ∈ B and Xt := 0 if t 6∈ B. Then Xt is constant, but

{(ω, t) ∈ Ω× [0,∞) : Xt(ω) = 1} = Ω×B

is not measurable. Hence the process is adapted but not measurable or even
progressively measurable.

(d) Examples of measurable, but not progressively measurable, processes
are trivial.
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Proposition 2.1.11. An adapted process such that all trajectories are left-
continuous (or right-continuous) is progressively measurable.

Proof. We only consider the case of right-continuous paths. For S = 0 we
easily have that the map (ω, 0) 7→ X0(ω) is measurable when considered
between (Ω × {0},F0 ⊗ B({0})) and (R,B(R)). Consider now S > 0. We
have to show that (ω, t) 7→ Xt(ω) is measurable when considered between
(Ω × [0, S],FS ⊗ B([0, S])) and (R,B(R)). For n ∈ {1, 2, . . .} we define Fn :

Ω× [0, S]→ R by (ω, t) 7→ X
(n)
t (ω) with

X
(n)
t (ω) := X k

2n
S
(ω)

for k−1
2n
S < t ≤ k

2n
S and k = 1, . . . , 2n, and X

(n)
0 (ω) := X0(ω). It is clear

that Fn is measurable when considered between (Ω × [0, S],FS ⊗ B([0, S]))
and (R,B(R)). Hence our claim follows since

Xt(ω) = lim
n→∞

Fn(ω, t)

by the path-wise right-hand side continuity of X.

Finally let us recall the notion of a martingale.

Definition 2.1.12. Let (Xt)t∈I be (Ft)t∈I-adapted and such that E|Xt| <∞
for all t ≥ 0.

(i) X is called martingale provided that for all 0 ≤ s ≤ t ∈ I one has

E(Xt | Fs) = Xs a.s.

(ii) X is called sub-martingale provided that for all 0 ≤ s ≤ t ∈ I one has

E(Xt | Fs) ≥ Xs a.s.

(iii) X is called super-martingale provided that for all 0 ≤ s ≤ t ∈ I one
has that

E(Xt | Fs) ≤ Xs a.s.

Finally we need some properties of the trajectories:
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Definition 2.1.13. Let X = (Xt)t∈I be a stochastic process.

(i) The process X is continuous provided that t→ Xt(ω) is continuous for
all ω ∈ Ω.

(ii) The process X is càdlàg (continue à droite, limites à gauche) provided
that t→ Xt(ω) is right-continuous and has left limits for all ω ∈ Ω.

(iii) The process X is càglàd (continue à gauche, limites à droite) provided
that t→ Xt(ω) is left-continuous and has right limits for all ω ∈ Ω.

2.2 Two basic examples of stochastic pro-

cesses

Brownian motion. The two-dimensional Brownian motion was observed
in 1828 by Robert Brown as diffusion of pollen in water. Later the one-
dimensional Brownian motion was used by Louis Bachelier around 1900
in modeling of financial markets and in 1905 by Albert Einstein. A
first rigorous proof of its (mathematical) existence was given by Norbert
Wiener in 1921. Later on, various different proofs of its existence were
given.

Proposition 2.2.1. There exists a probability space (Ω,F ,P) and a process
W = (Wt)t≥0 with W0 ≡ 0 such that

(i) (Wt)t≥0 is continuous,

(ii) for all 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t < ∞ the random variable
Wt −Ws is independent of (Ws1 , ...,Wsn) (independent increments),

(iii) for all 0 ≤ s < t < ∞ one has Wt − Ws ∼ N (0, t − s) (stationary
increments).

Definition 2.2.2. A process satisfying the properties of Proposition 2.2.1 is
called standard Brownian motion.
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Poisson process. Let us assume that we have a lamp. Statistics says that
the probability that a bulb breaks down is at any time the same. Hence it
does not make sense to change a bulb before it is broken down.

How to model this? We need to have a distribution without memory, and
this is the exponential distribution. This yields to the following construction:
We take independent random variables ∆1,∆2, ... : Ω→ R with ∆i ≥ 0 and

P(∆i ∈ B) =

∫
B

λe−λtdt

for B ∈ B(R), where λ > 0 is a parameter to model the time for break-
ing down. The random variables ∆i have an exponential distribution with
parameter λ > 0. Letting

Sn := ∆1 + · · ·+ ∆n

with S0 = 0 gives the time that the nth bulb broke down. The inverse
function

Nt := max{n ≥ 0 : Sn 5 t}
describes the number of bulbs which were broken down until time t.

Definition 2.2.3. (Nt)t≥0 is called Poisson process with intensity λ > 0.

Proposition 2.2.4. (i) (Nt)t≥0 is a càdlàg process.

(ii) Nt − Ns is independent from (Ns1 , ..., Nsn) for 0 ≤ s1 ≤ · · · sn ≤ s <
t <∞.

(iii) Nt−Ns has a Poisson distribution with parameter λ(t− s), that means

P(Nt −Ns = k) = µk

k!
e−µ for µ = λ(t− s).

Both processes are Lévy processes which are defined now:

Definition 2.2.5. A process (Xt)t≥0, X0 ≡ 0 is called Lévy process if

(i) X is càdlàg,

(ii) for all 0 ≤ s1 ≤ · · · ≤ sn ≤ s < t <∞ the random variable Xt −Xs is
independent from (Xs1 , ..., Xsn) (independent increments),

(iii) for all 0 ≤ s < t < ∞ one has that Xt −Xs has the same distribution
as Xt−s (stationary increments).
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2.3 Gaussian processes

Gaussian processes form a class of stochastic processes used in several
branches in pure and applied mathematics. Some typical examples are the
following:

• In the theory of stochastic processes many processes can be represented
and investigated as transformations of the Brownian motion.

• In real analysis the Laplace operator is directly connected to the Brow-
nian motion.

• The modeling of telecommunication traffic, where the fractional Brow-
nian motion is used.

We introduce Gaussian processes in two steps. First we recall Gaussian
random variables with values in Rn, then we turn to the processes.

Definition 2.3.1. (i) A random variable f : Ω → R is called Gaussian
provided that P(f = m) = 1 for some m ∈ R or there are m ∈ R and
σ > 0 such that

P(f ∈ B) =

∫
B

e−
(x−m)2

2σ2
dx√
2πσ

for all B ∈ B(R). The parameters m and σ2 are called expected value
and variance, respectively.

(ii) A random vector f = (f1, ..., fn) : Ω→ Rn is called Gaussian provided
that for all a = (a1, ..., an) ∈ Rn one has that

〈f(ω), a〉 :=
n∑
i=1

aifi(ω)

is Gaussian. The parameters m = (m1, ...,mn) with mi := Efi and
σ = (σij)

n
i,j=1 with

σij := E(fi −mi)(fj −mj)

are called mean (vector) and covariance (matrix), respectively.

For a Gaussian random variable we can compute the expected value and
the variance by

m = Ef and σ2 = E(f −m)2.



18 CHAPTER 2. STOCHASTIC PROCESSES IN CONTINUOUS TIME

Proposition 2.3.2. Assume Gaussian random vectors f, g : Ω → Rn with
the same parameters (m,σ). Then f and g have the same laws.

Proof. If f̂(a) := Eei〈f,a〉 and ĝ(a) := Eei〈g,a〉 are the characteristic functions,

then by the uniqueness theorem we need to show that f̂(a) = ĝ(a) for all
a ∈ Rn. For this it is sufficient to have that the distributions of 〈f, a〉 and
〈g, a〉 are the same. By assumption both random variables are Gaussian
random variables. Hence we only have to check the expected values and the
variances. We get

E〈f, a〉 =
n∑
i=1

aiEfi =
n∑
i=1

aimi =
n∑
i=1

aiEgi = E〈g, a〉

and

E(〈f, a〉 − E〈f, a〉)2 =
n∑

i,j=1

aiajE(fi −mi)(fj −mj)

= 〈σa, a〉

=
n∑

i,j=1

aiajE(gi −mi)(gj −mj)

= E(〈g, a〉 − E〈g, a〉)2

and are done.

Now we introduce Gaussian processes.

Definition 2.3.3. A stochastic process X = (Xt)t∈I , Xt : Ω → R, is called
Gaussian provided that for all n = 1, 2, ... and all 0 ≤ t1 < t2 < · · · < tn ∈ I
one has that

(Xt1 , ..., Xtn) : Ω→ Rn

is a Gaussian random vector. Moreover, we let

mt := EXt and Γ(s, t) := E(Xs −ms)(Xt −mt).

The process m = (mt)t∈I is called mean (process) and the process (Γ(s, t))s,t∈I
covariance (process).
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Up to now we only defined Gaussian processes, however we do not know
yet whether they exist. We will prove the existence by analyzing the finite
dimensional distributions of a stochastic process X = (Xt)t∈I . What are the
properties we can expect? From now on we use the index set

∆ := {(t1, ..., tn) : n ≥ 1, t1, ..., tn ∈ I are distinct} .

Then the family (µt1,...,tn)(t1,...,tn)∈∆ with

µt1,...,tn(B) := P((Xt1 , ..., Xtn) ∈ B)

defines a family of measures such that

µt1,...,tn(B1 × · · · ×Bn) = µ(tπ(1),...,tπ(n))(Bπ(1) × · · · ×Bπ(n)),

µt1,...,tn(B1 × · · · ×Bn−1 × R) = µt1,...,tn−1(B1 × · · · ×Bn−1)

for all B1, ..., Bn ∈ B(R) and all permutations π : {1, ..., n} → {1, ..., n}.
This is our starting point:

Definition 2.3.4. A family of probability measures (µt1,...,tn)(t1,...,tn)∈∆,
where µt1,...,tn is a measure on B(Rn) is called consistent provided that

(i) µt1,...,tn(B1 × · · · × Bn) = µ(tπ(1),...,tπ(n))(Bπ(1) × · · · × Bπ(n)) for all
n = 1, 2, ..., B1, ..., Bn ∈ B(R), and all permutations π : {1, ..., n} →
{1, ..., n},

(ii) µt1,...,tn(B1× · · · ×Bn−1×R) = µt1,...,tn−1(B1× · · · ×Bn−1) for all n ≥ 2
and B1, ..., Bn−1 ∈ B(R).

We show that a consistent family of measures can be derived from one
measure. The measure will be defined on the following σ-algebra:

Definition 2.3.5. We let B
(
RI
)

be the smallest σ-algebra which contains
all cylinder sets

A := {(ξt)t∈I : (ξt1 , ..., ξtn) ∈ B}
for (t1, ..., tn) ∈ ∆ and B ∈ B(Rn).

Proposition 2.3.6 (Daniell 1918, Kolmogorov 1933). Assume a con-
sistent family (µt1,...,tn)(t1,...,tn)∈∆ of probability measures. Then there exists a
probability measure µ on B(RI) such that

µ((ξt)t∈I : (ξt1 , ..., ξtn) ∈ B) = µt1,...,tn(B)

for all (t1, ..., tn) ∈ ∆ and B ∈ B(Rn).
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Proof. Let A be the algebra of cylinder sets

A := {(ξt)t∈I : (ξt1 , ..., ξtn) ∈ B}

with (t1, ..., tn) ∈ ∆ and B ∈ B(Rn), that means we have that

• RI ∈ A,

• A1, ..., An ∈ A implies that A1 ∪ · · · ∪ An ∈ A,

• A ∈ A implies that Ac ∈ A.

Now we define ν : A → [0, 1] by

ν((ξt)t∈I : (ξt1 , ..., ξtn) ∈ B) := µt1,...,tn(B).

In fact, ν is well-defined. Assume that

{(ξt)t∈I : (ξs1 , ..., ξsm) ∈ B} = {(ξt)t∈I : (ξt1 , ..., ξtn) ∈ C} .

Let (r1, ..., rN) ∈ ∆ such that {r1, ..., rN} = {s1, ..., sm, t1, ..., tn}. By adding
coordinates we find an D ∈ B(RN) such that the sets above are equal to

{(ξt)t≥0 : (ξr1 , ..., ξrN ) ∈ D} .

By the consistency we have that

µs1,...,sm(B) = µr1,...,rN (D) = µt1,...,tn(C).

Now we indicate how to check that ν is σ-additive on A, which means that

ν

(
∞⋃
n=1

An

)
=
∞∑
n=1

ν(An) = lim
N→∞

∞∑
n=N+1

ν(An)

for A1, A2, ... ∈ A, Ai ∩ Aj = ∅ for i 6= j, and
⋃∞
n=1An ∈ A. By subtracting

limN→∞
∑∞

n=N+1 ν(An) we see, that it is sufficient to prove that

lim
N→∞

ν

(
∞⋃

n=N+1

An

)
= 0.

Letting CN :=
⋃∞
n=N+1An this writes as

lim
n
ν(Cn) = 0
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for C1 ⊇ C2 ⊇ · · · ∈ A with
⋂∞
n=1 Cn = ∅. Assume that

lim
n
ν(Cn) = 3ε > 0.

Because we only use finitely many coordinates for each Cn we can transform
the problem from RI to RN with N = {1, 2, ...} and consider Cn as cylinder
sets in RN. By the inner regularity of probability measures on B(RL) one can
construct compact sets Kn ⊆ RLn such that

ν(D0
n) ≥ ν(Cn)− εn

with εn := ε/2n+1, D0
n := Kn × R∞ ⊆ Cn. We construct the new sequence

Dn := D0
1 ∩ · · · ∩D0

n

and get

• Dn ⊆ D0
n = Kn × R∞ ⊆ Cn,

• D1 ⊇ D2 ⊇ · · · ,

• ν(Dn) ≥ ν(D0
n)− (ε1 + · · ·+ εn) ≥ ν(D0

n)− ε ≥ ν(Cn)− 2ε.

Hence limn ν(Dn) ≥ ε > 0. This would imply that
⋂∞
n=1 Dn = ∅ as well.

However all coordinate sections of the Dn are compact in R and decreasing
so that there is non-empty intersection which disproves that

⋂∞
n=1Dn = ∅.

Having proved this we allowed to apply Carathéodory’s extension the-
orem and obtain the desired probability measure.

As an application we get the following

Proposition 2.3.7. Let (Γ(s, t))s,t∈I be positive semi-definite and symmet-
ric, that means

n∑
i,j=1

Γ(ti, tj)aiaj ≥ 0 and Γ(s, t) = Γ(t, s)

for all s, t, t1, ..., tn ∈ I and a1, ..., an ∈ R. Then there exists a probability
space (Ω,F ,P) and a Gaussian process X = (Xt)t∈I defined on (Ω,F ,P)
with

(i) EXt = 0,



22 CHAPTER 2. STOCHASTIC PROCESSES IN CONTINUOUS TIME

(ii) EXsXt = Γ(s, t).

Remark 2.3.8. Given any stochastic process X = (Xt)t∈I ⊆ L2 with EXt =
0 and Γ(s, t) := EXsXt we always have that Γ is positive semi-definite and
symmetric.

Proof of Proposition 2.3.7. We will construct a consistent family of probabil-
ity measures. Given (t1, ..., tn) ∈ ∆, we let µt1,...,tn be the Gaussian measure
on Rn with mean zero and covariance∫

Rn
ξiξjdµt1,...,tn(ξ1, ..., ξn) = Γ(ti, tj).

If the measure exists, then it is unique. To obtain the measure we let C :=
(Γ(ti, tj))

n
i,j=1, so that C is symmetric and positive semi-definite. We know

from algebra that there is a matrix A such that C = AAT . Let γn be
the standard Gaussian measure on Rn and µ be the image with respect to
A : Rn → Rn. Then∫

Rn
〈x, ei〉dµ(x) =

∫
Rn
〈Ax, ei〉dγn(x) = 0

and ∫
Rn
〈x, ei〉〈x, ej〉dµ(x) =

∫
Rn
〈Ax, ei〉〈Ax, ej〉dγn(x)

=

∫
Rn
〈x,AT ei〉〈x,AT ej〉dγn(x)

= 〈AT ei, AT ej〉
= 〈ei, AAT ej〉
= 〈ei, Cej〉.

The defined family of measures is easily seen to be consistent: given a per-
mutation π : {1, ..., n} → {1, ..., n} we have that the covariance of µtπ(1),...,tπ(n)

is Γ(tπ(i), tπ(j)) which proves property (i). Hence µtπ(1),...,tπ(n)
can be obtained

from µ by permutation of the coordinates. To prove that

µt1,...,tn−1,tn(B1 × · · · ×Bn−1 × R) = µt1,...,tn−1(B1 × · · · ×Bn−1)
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we consider the linear map A : Rn → Rn−1 with A(ξ1, ..., ξn) := (ξ1, ..., ξn−1)
so that

A−1(B1 × · · · ×Bn−1) = B1 × · · · ×Bn−1 × R

and

µt1,...,tn−1,tn(B1 × · · · ×Bn−1 × R) = µt1,...,tn−1,tn(A−1(B1 × · · · ×Bn−1))

and we need to show that

ν := µt1,...,tn−1,tn(A−1(·)) = µt1,...,tn−1 .

The measure ν is the image measure of µt1,...,tn−1,tn with respect to A so that
it is a Gaussian measure. Moreover,∫

Rn−1

ηiηjdν(η1, ..., ηn−1)

=

∫
Rn
〈Aξ, ei〉〈Aξ, ej〉dµt1,...,tn(ξ)

=

∫
Rn
〈ξ, AT ei〉〈ξ, AT ej〉dµt1,...,tn(ξ)

=
n∑

k,l=1

〈ek, AT ei〉〈el, AT ej〉
∫
Rn
〈ξ, ek〉〈ξ, el〉dµt1,...,tn(ξ)

=
n∑

k,l=1

〈ek, AT ei〉〈el, AT ej〉σkl

=
n∑

k,l=1

〈Aek, ei〉〈Ael, ej〉σkl

=
n−1∑
k,l=1

〈ek, ei〉〈el, ej〉σkl

= σij.

Now the process X = (Xt)t∈I is obtained by Xt : RI → R with Xt((ξs)I) :=
ξt.

Let us consider our first examples:
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Example 2.3.9 (Brownian motion). For I = [0,∞) we let

Γ(s, t) := min {s, t} =

∫ ∞
0

χ[0,s](ξ)χ[0,t](ξ)dξ

so that

n∑
i,j=1

Γ(ti, tj)aiaj =

∫ ∞
0

n∑
i,j=1

aiχ[0,ti](ξ)ajχ[0,tj ](ξ)dξ

=

∫ ∞
0

(
n∑
i=1

aiχ[0,ti](ξ)

)2

dξ

≥ 0.

Example 2.3.10 (Brownian bridge). For I = [0, 1] we let

Γ(s, t) :=

{
s(1− t) : 0 ≤ s ≤ t ≤ 1
t(1− s) : 0 ≤ t ≤ s ≤ 1

and want to get a Gaussian process returning to zero at time T = 1. The
easiest way to show that Γ is positive semi-definite is to find one realization
of this process: we take the Brownian motion W = (Wt)t≥0 like in Example
2.3.9, let

Xt := Wt − tW1

and get that

EXsXt = E(Ws − sW1)(Wt − tW1)

= EWsWt − tEWsW1 − sEW1Wt + stEW 2
1

= s− ts− st+ st

= s(1− t)

for 0 ≤ s ≤ t ≤ 1.

Example 2.3.11 (Fractional Brownian motion). As for the Brownian motion
we assume that I = [0,∞). The Fractional Brownian motion was considered
in 1941 by Kolmogorov in connection with turbulence and in 1968 by
Mandelbrot and Van Ness as fractional Gaussian noise. Let H ∈ (0, 1).
As fractional Brownian motion with Hurst index H (Hurst was an English
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hydrologist) we denote a Gaussian process (WH
t )t≥0 with EWH

t = 0 and with
the covariance function

EXsXt = Γ(s, t) :=
1

2

(
t2H + s2H − |t− s|2H

)
.

For H = 1/2 we get Γ(s, t) = min {s, t}, that means the Brownian motion
from Example 2.3.9. The main problem consists in showing that Γ is positive
semi-definite. To give the idea for this proof let t0 := 0 and a0 := −

∑n
i=1 ai

so that
∑n

i=0 ai = 0 and

n∑
i,j=1

Γ(ti, tj)aiaj = −1

2

n∑
i,j=0

|ti − tj|2Haiaj.

Take ε > 0 so that

n∑
i,j=0

e−ε|ti−tj |
2H

aiaj =
n∑

i,j=0

(
e−ε|ti−tj |

2H − 1
)
aiaj

= −ε
n∑

i,j=0

|ti − tj|2Haiaj + o(ε)

= 2ε
n∑

i,j=1

Γ(ti, tj)aiaj + o(ε).

Hence it is sufficient to show that

n∑
i,j=0

e−ε|ti−tj |
2H

aiaj ≥ 0.

Case H ∈ (0, 1
2
]: In this case we first construct a random variable Z such

that
EeitZ = e−ε|t|

2H

by the following result:

Fact 2.3.12 (Polya). Let ϕ : R→ [0,∞) be

(i) continuous,

(ii) even (i.e. ϕ(x) = ϕ(−x)),



26 CHAPTER 2. STOCHASTIC PROCESSES IN CONTINUOUS TIME

(iii) convex on [0,∞),

(iv) and assume that ϕ(0) = 1 and limx→∞ ϕ(x) = 0.

Then there exists a probability measure µ on R such that µ̂(x) = ϕ(x).

General case H ∈ (0, 1): For 0 < p = 2H < 2 one gets the desired random

variable Z with EeitZ = e−ε|t|
2H

by

Z =
∞∑
j=1

Γ
− 1
p

j ηj

where (Γj)
∞
j=1 are the jumps of a standard Poisson process and η1, η2, ... are

iid copies of a symmetric p-integrable random variable.

Since characteristic functions are positive semi-definite, we are done in
both cases.

The random variables we obtained in both cases are p-stable with p = 2H,
i.e. αZ + βZ ′ and (|α|p + |β|p)1/pZ have the same distribution if α, β ∈ R
and Z ′ is an independent copy of Z.

Up to now we have constructed stochastic processes with certain finite-
dimensional distributions. In the case of Gaussian processes this can be done
through the covariance structure. Now we go the next step and provide the
path-properties we would like to have. Here we use the fundamental

Proposition 2.3.13 (Kolmogorov). Let X = (Xt)t∈[0,1], Xt : Ω → R,
be a family of random variables such that there are constants c, ε > 0 and
p ∈ [1,∞) with

E|Xt −Xs|p ≤ c|t− s|1+ε.

Then there is a modification Y of the process X such that

E sup
s 6=t

(
|Yt − Ys|
|t− s|α

)p
<∞

for all 0 < α < ε
p

and that all trajectories are continuous.

Remark 2.3.14. In particular we get from the proof of the proposition two
things:
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(i) The function f : Ω→ [0,∞] given by

f(ω) := sup
s6=t

|Yt(ω)− Ys(ω)|
|t− s|α

is a measurable function.

(ii) The function f is almost surely finite (otherwise E|f |p would be infinite),
so that there is a set Ω0 of measure one such that for all ω ∈ Ω0 there
is a c(ω) > 0 such that

|Yt(ω)− Ys(ω)| ≤ c(ω)|t− s|α

for all s, t ∈ [0, 1] and ω ∈ Ω0. In particular, the trajectories t→ Yt(ω)
are continuous for ω ∈ Ω0.

Remark 2.3.15. Proposition 2.3.13 can be formulated as an embedding the-
orem: The assumption reads as

‖Xt −Xs‖p ≤ c
1
p |t− s|

1
p

+ ε
p =: d|t− s|

1
p

+η.

Letting

‖X‖
C

1
p+η

(Lp)
:= sup

s 6=t

‖Xt −Xs‖p
|t− s|

1
p

+η

and

‖X‖Lp(Cα) :=

∥∥∥∥sup
s 6=t

|Yt − Ys|
|t− s|α

∥∥∥∥
p

,

then we get the embedding

C
1
p

+η(Lp) ↪→ Lp(C
α) for 0 < α < η.

Before we prove Kolmogorov’s theorem we consider our fundamental
example, the Brownian motion.

Proposition 2.3.16. Let W = (Wt)t≥0 be a Gaussian process with mean
m(t) = 0 and covariance Γ(s, t) = EWsWt = min {s, t}. Then there is
a modification B = (Bt)t≥0 of W = (Wt)t≥0 such that all trajectories are
continuous and

E
(

sup
0≤s<t≤T

|Bt −Bs|
|t− s|α

)p
<∞

for all 0 < α < 1
2
, 0 < p <∞, and T > 0.



28 CHAPTER 2. STOCHASTIC PROCESSES IN CONTINUOUS TIME

Proof. First we fix T > 0 and define

Xt := WtT

for t ∈ [0, 1]. Then, for p ∈ (0,∞),

E|Xt −Xs|p = E|WtT −WsT |p

= E|W(t−s)T |p

=
1√

2π(t− s)T

∫
R
|ξ|pe−

ξ2

2(t−s)T dξ

= ((t− s)T )
p
2

1√
2π

∫
R
|ξ|pe−

ξ2

2 dξ

= γp(t− s)
p
2T

p
2

where we used that the covariance structure implies Wb −Wa ∼ N(0, b− a)
for 0 ≤ a < b <∞. Now fix α ∈ (0, 1/2) and p ∈ (2,∞) such that

1
1
2
− α

< p <∞ and 0 < α <
ε

p
=

1

2
− 1

p

and
E|Xt −Xs|p ≤ γpT

p
2 (t− s)1+ε.

Proposition 2.3.13 implies the existence of a path-wise continuous modifica-
tion Y = Y (α, p) of X such that(

E sup
0≤s<t≤1

∣∣∣∣ |Yt(α, p)− Ys(α, p)||t− s|α

∣∣∣∣q) 1
q

≤
(
E sup

0≤s<t≤1

∣∣∣∣ |Yt(α, p)− Ys(α, p)||t− s|α

∣∣∣∣p) 1
p

<∞. (2.1)

for all q ∈ (0, p]. Hence for all 0 < α < 1/2 and 0 < p < ∞ we find a
modification Y (α, p) such that (2.1) is satisfied. However, since Y (α1, p1)
and Y (α2, p2) are continuous and modifications of each other, they are indis-
tinguishable. Hence we can pick one process Y = Y (p0, α0) which satisfies
(2.1) for all 0 < α < 1/2 and all 0 < p < ∞. Coming back to our original
time-scale we have found a continuous modification (BT

t )t∈[0,T ] of (Wt)t∈[0,T ]

such that

E sup
0≤s<t≤T

(
|BT

s −BT
t |

|t− s|α

)p
<∞
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for all 0 < α < 1/2 and 0 < p < ∞. We are close to the end, we only have
to remove the remaining parameter T . For this purpose we let

ΩT :=
{
ω ∈ Ω : BT

t (ω) = Wt(ω), t ∈ Q ∩ [0, T ]
}

and Ω̃ :=
⋂∞
N=1 ΩN so that P(Ω̃) = 1 and

BN1
t (ω) = BN2

t (ω) for t ∈ Q ∩ [0,min {N1, N2}]

and ω ∈ Ω̃. Since (BNi
t )t∈[0,Ni] are continuous processes we derive that

BN1
t (ω) = BN2

t (ω) for t ∈ [0,min {N1, N2}]

whenever ω ∈ Ω̃. Hence we have found one process (Bt)t≥0 on Ω̃ and may

set the process B zero on Ω \ Ω̃.

Proof of Proposition 2.3.13. (a) For m = 1, 2, ... we let

Dm :=

{
0,

1

2m
, ...,

2m

2m

}
and D :=

∞⋃
m=1

Dm.

Moreover, we set

∆m :=
{

(s, t) ∈ Dm ×Dm : |s− t| = 2−m
}

and Km := sup
(s,t)∈∆m

|Xt −Xs|.

Then card(∆m) ≤ 2 2m and

EKp
m = E sup

(s,t)∈∆m

|Xt −Xs|p

≤
∑

(s,t)∈∆m

E|Xt −Xs|p

≤ card(∆m)c

(
1

2m

)1+ε

≤ 22mc2−m2−mε

= 2c2−mε.

(b) Let s, t ∈ D and

Sk := max {sk ∈ Dk : sk ≤ s} ∈ Dk
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Tk := max {tk ∈ Dk : tk ≤ t} ∈ Dk

so that Sk ↑ s, Tk ↑ t, and Sk = s and Tk = t for k ≥ k0. For |t − s| ≤ 2−m

we get that

Xs −Xt =
∞∑
i=m

(
XSi+1

−XSi

)
+XSm +

∞∑
i=m

(
XTi −XTi+1

)
−XTm

where we note that the sums are finite sums, that |Tm − Sm| ∈ {0, 2−m},
Si+1 − Si ∈

{
0, 2−(i+1)

}
, and that Ti+1 − Ti ∈

{
0, 2−(i+1)

}
. Hence

|Xt −Xs| ≤ Km + 2
∞∑
i=m

Ki+1 ≤ 2
∞∑
i=m

Ki.

(c) Let

Mα := sup

{
|Xt −Xs|
|t− s|α

: s, t ∈ D, s 6= t

}
.

Now we estimate Mα from above by

Mα = sup
m=0,1,...

sup

{
|Xt −Xs|
|t− s|α

: s, t ∈ D, s 6= t, 2−m−1 ≤ |t− s| ≤ 2−m
}

≤ sup
m=0,1,...

2(m+1)α sup
{
|Xt −Xs| : s, t ∈ D, s 6= t, |t− s| ≤ 2−m

}
≤ 2 sup

m=0,1,...
2(m+1)α

∞∑
i=m

Ki

≤ 21+α

∞∑
i=0

2αiKi,

where we used step (b), and

‖Mα‖Lp ≤ 21+α

∞∑
i=0

2αi‖Ki‖Lp

≤ 21+α

∞∑
i=0

2αi(2c)
1
p2−

iε
p

= 21+α(2c)
1
p

∞∑
i=0

2i(α−
ε
p)
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< ∞

where we used step (a).
(d) Hence there is a set Ω0 ⊆ Ω with P(Ω0) = 1 such that t → Xt(ω) is

uniformly continuous on D for ω ∈ Ω0. We define

Yt(ω) :=


Xt(ω) : ω ∈ Ω0, t ∈ D

lims↑t,s∈DXs(ω) : ω ∈ Ω0, t 6∈ D
0 : ω 6∈ Ω0

.

It remains to show that P(Xt = Yt) = 1. Because of our assumption we have
that

‖Xtn −Xt‖Lp → 0 as tn ↑ t.

Take tn ∈ D and find a subsequence (nk)
∞
k=1 such that

P(lim
k
Xtnk

= Xt) = 1.

Since P(limkXtnk
= Yt) = 1 by construction, we are done.

2.4 Brownian motion

In this section we prove the existence of the Brownian motion introduced
already earlier. To this end we start with a setting which does not use a
filtration. This leads, in our first step, to a Brownian motion formally a bit
different than presented in Definition 2.2.2.

Definition 2.4.1. Let (Ω,F ,P) be a probability space and B = (Bt)t≥0

be a stochastic process. The process B is called standard Brownian motion
provided that

(i) B0 ≡ 0,

(ii) for all 0 ≤ s < t < ∞ the random variable Bt − Bs is independent
from (Bu)u∈[0,s], which means that for all 0 ≤ s1 ≤ · · · ≤ sn ≤ s and
A,A1, ..., An ∈ B(R) one has

P(Bs1 ∈ A1, ..., Bsn ∈ An, Bt −Bs ∈ A) =

P(Bs1 ∈ A1, ..., Bsn ∈ An)P(Bt −Bs ∈ A),
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(iii) for all 0 ≤ s < t <∞ and for all A ∈ B(R) one has

P(Bt −Bs ∈ A) =
1√

2π(t− s)

∫
A

e−
x2

2(t−s)dx,

(iv) all paths t→ Bt(ω) are continuous.

Proposition 2.4.2. The standard Brownian motion exists.

Proof. We take the process B = (Bt)t≥0 from Proposition 2.3.16.
(i) Since EB0B0 = 0 so that B0 = 0 a.s. we can set the whole process B

on the null-set {B0 6= 0} to zero and the conclusion of Proposition 2.3.16 is
still satisfied.

(iv) follows directly from Proposition 2.3.16.
(iii) follows from E(Bt −Bs) = 0,

E(Bt −Bs)
2 = t− 2 min {t, s}+ s = t− s,

and the fact that Bt −Bs is a Gaussian random variable.
(ii) The random variables Bt − Bs, Bsn − Bsn−1 , ..., Bs2 − Bs1 , Bs1 are

independent since they form a Gaussian random vector and any two of them
are uncorrelated. Consequently

P(Bs1 ∈ A1, ..., Bsn ∈ An, Bt −Bs ∈ A)

= P((Bs1 , ..., Bsn) ∈ A1 × · · · × An, Bt −Bs ∈ A)

= P((Bs1 , Bs2 −Bs1 , ..., Bsn −Bsn−1) ∈ C,Bt −Bs ∈ A)

= P((Bs1 , Bs2 −Bs1 , ..., Bsn −Bsn−1) ∈ C)P(Bt −Bs ∈ A)

= P(Bs1 ∈ A1, ..., Bsn ∈ An)P(Bt −Bs ∈ A)

where

C := {(y1, ..., yn) ∈ Rn : y1 ∈ A1, y1 + y2 ∈ A2, ...., y1 + · · ·+ yn ∈ An} .

Proposition 2.4.3. Let B = (Bt)t≥0 be a stochastic process such that all tra-
jectories are continuous and such that B0 ≡ 0. Then the following assertions
are equivalent:

(i) The process B is a standard Brownian motion.
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(ii) The process B is a Gaussian process with mean m(t) ≡ 0 and covariance
Γ(s, t) = min {s, t}.

Proof. (ii) ⇒ (i) From Proposition 2.3.16 (see Proposition 2.4.2) we get

that there is a modification B̃ of B which is a standard Brownian motion.
Since both processes are continuous they are indistinguishable. Hence B is
a standard Brownian motion as well.

(i) ⇒ (ii) The mean is zero by definition and the covariance is obtained
by, for 0 ≤ s < t <∞,

EBsBt = EBs(Bt −Bs) + EB2
s = EBsE(Bt −Bs) + s = s.

It remains to show that B is a Gaussian process. To this end we have to
check whether for all n = 1, 2, ... and 0 ≤ t1 < t2 < · · · < tn <∞

(Bt1 , ..., Btn) : Ω→ Rn

is a Gaussian random vector. We know that Btn−Btn−1 , ..., Bt2−Bt1 , Bt1 are
independent Gaussian random variables so that (Btn−Btn−1 , ..., Bt2−Bt1 , Bt1)
is a Gaussian random vector. Using the linear transformation A : Rn → Rn

defined by A(ξ1, ..., ξn) := (ξ1 + · · ·+ ξn, ξ1 + · · ·+ ξn−1, ..., ξ1) we obtain

A((Btn −Btn−1 , ..., Bt2 −Bt1 , Bt1)) = (Btn , Btn−1 , ..., , Bt1)

and are done since the linear image of a Gaussian random vector is a Gaussian
random vector.

Proposition 2.4.4. The trajectories of the standard Brownian motion are
Hölder continuous with exponent α ∈ (0, 1/2), i.e. the set

Aα,T :=

{
ω ∈ Ω : sup

0≤s<t≤T

|Bt(ω)−Bs(ω)|
|t− s|α

<∞
}

is measurable and of measure one for all α ∈ (0, 1/2) and T > 0.

Proof. Since the Brownian motion is continuous we get that Aα,T ∈ F . More-
over, EBsBt = min {s, t} implies by Proposition 2.3.16 that there is a contin-

uous modification B̃ = (B̃t)t≥0 of B such that the corresponding set Ãα,T has

measure one. However, B and B̃ are indistinguishable, so that P(Aα,T ) = 1
as well.
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For our later purpose we need a slight modification of the definition of
the Brownian motion. We include a filtration as follows:

Definition 2.4.5. Let (Ω,F ,P; (Ft)t∈I) be a stochastic basis. An adapted
stochastic process B = (Bt)t∈I , Bt : Ω → R, is called (standard) (Ft)t∈I-
Brownian motion provided that

(i) B0 ≡ 0,

(ii) for all 0 ≤ s < t ∈ I the random variable Bt − Bs is independent from
Fs that means that

P(C ∩ {Bt −Bs ∈ A}) = P(C)P(Bt −Bs ∈ A)

for C ∈ Fs and A ∈ B(R),

(iii) for all 0 ≤ s < t ∈ I one has Bt −Bs ∼ N(0, t− s),

(iv) for all ω ∈ Ω the trajectories t→ Bt(ω) are continuous.

Now we link this form of definition to the previous one.

Proposition 2.4.6. Let B = (Bt)t≥0 be a standard Brownian motion in
the sense of Definition 2.4.1 and let (FBt )t≥0 be its natural filtration, i.e.
FBt := σ(Bs : s ∈ [0, t]). Then (Bt)t∈I is an (FBt )t∈I-Brownian motion.

Proof. Comparing Definitions 2.4.1 and 2.4.5 we only need to check that
Definition 2.4.1(ii) implies Definition 2.4.5(ii) which is left as an exercise.

For technical reason we have to go one step further: we have to augment
the natural filtration. First we recall the completion of a probability space.

Lemma 2.4.7. Let (Ω,F ,P) be a probability space and

N := {A ⊆ Ω : there exists a B ∈ F with A ⊆ B and P(B) = 0} ∪ {∅} .

(i) Let G be a sub-σ-algebra of F . Then B ∈ G ∨ N if and only if there is
a A ∈ G such that A∆B ∈ N .

(ii) The measure P can be extended to a measure P̃ on F̃ := F ∨ N by

P̃(B) := P(A) for A ∈ F such that A∆B ∈ N .
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Definition 2.4.8. The probability space (Ω, F̃ , P̃) is called completion of
(Ω,F ,P).

Definition 2.4.9. Let X = (Xt)t∈I , Xt : Ω→ R, be a stochastic process,

FX∞ := σ(Xs : s ∈ I), and FXt := σ(Xs : s ∈ [0, t])

for t ∈ I. Define

N :=
{
A ⊆ Ω : there exists a B ∈ FX∞ with A ⊆ B and P(B) = 0

}
Then (Ft)t∈I with Ft := FXt ∨N is called augmentation of (FXt )t∈I .

Proposition 2.4.10. Let B = (Bt)t≥0 be a standard Brownian motion,
(FBt )t≥0 be its natural filtration and (Ft)t∈I be the augmentation of (FBt )t∈I .
Then

(i) the process (Bt)t∈I is an (Ft)t∈I-Brownian motion,

(ii) the filtration (Ft)t∈I is right-continuous that means that

Ft =
⋂

s∈(t,S)

Fs

with 0 ≤ t < S :=∞ if I = [0,∞) and 0 ≤ t < S := T if I = [0, T ].

Proof. (i) We only have to check that Bt − Bs is independent of Fs for

0 ≤ s < t <∞. Assume C ∈ Fs and find an C̃ ∈ FBs such that P(C∆C̃) = 0

where we denote the extension P̃ of P again by P. Taking A ∈ B(R) we get
that

P({Bt −Bs ∈ A} ∩ C) = P({Bt −Bs ∈ A} ∩ C̃)

= P(Bt −Bs ∈ A)P(C̃) = P(Bt −Bs ∈ A)P(C).

(ii) The right-hand side continuity of the filtration (Ft)t∈I is not proved
here.

Definition 2.4.11. The stochastic basis (Ω,F ,P; (Ft)t∈I) satisfies the usual
conditions provided that
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(i) (Ω,F ,P) is complete,

(ii) A ∈ Ft for all A ∈ F with P(A) = 0 and t ∈ I,

(iii) the filtration (Ft)t∈I is right-continuous that means that

Ft =
⋂

s∈(t,S)

Fs

with 0 ≤ t < S :=∞ if I = [0,∞) and 0 ≤ t < S := T if I = [0, T ].

2.5 Stopping and optional times

The heuristic Reflection Principle as motivation: Stopping times and
optional times are random times that form an important tool in the theory of
stochastic processes. To demonstrate their usefulness let us briefly consider
the Reflection Principle for a standard Brownian motion B = (Bt)t≥0. Given
b > 0, we are interested in the distribution of

τb := inf{t ≥ 0 : Bt = b}.

First we write

P(τb < t) = P(τb < t, Bt > b) + P(τb < t, Bt < b).

Then our heuristic Reflection Principle says that

P(τb < t, Bt < b) = P(τb < t, Bt > b). (2.2)

On the other hand

P(τb < t,Bt > b) = P(Bt > b)

which implies

P(τb < t) = P(τb < t, Bt > b) + P(τb < t, Bt < b)

= 2P(τb < t, Bt > b)

= 2P(Bt > b).

From this one can deduce at least two things:
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• The Brownian motion reaches with probability one any level because

P(τb <∞) = lim
t→∞

P(τb < t) = 2 lim
t→∞

P(Bt > b)

= 2 lim
t→∞

P
(
B1 >

b√
t

)
= 1.

• One can deduce the distribution of the running maximum of the Brow-
nian motion Mt(ω) := sups∈[0,t] Bs(ω) because

{Mt ≥ b} = {τb ≤ t} so that P(Mt ≥ b) = 2P(Bt > b).

To justify (2.2) would require a considerable amount of work. Here we only
introduce the concepts around the random time τb : Ω→ [0,∞] like stopping
times and optional times, and their relations to each other.

The precise definitions: In the following we assume in the case I = [0, T ]
that F = FT . Moreover, to treat both cases, I = [0,∞) and I = [0, T ], at
the same time, we let

Ī :=

{
[0,∞] : I = [0,∞)

[0, T ] : I = [0, T ]
.

Definition 2.5.1. Assume a measurable space (Ω,F) equipped with a fil-
tration (Ft)t∈I .

(i) The map τ : Ω→ Ī is called stopping time with respect to the filtration
(Ft)t∈I provided that

{τ 5 t} ∈ Ft
for all t ∈ I. Moreover,

Fτ := {A ∈ F : A ∩ {τ 5 t} ∈ Ft for all t ∈ I}.

(ii) The map τ : Ω→ Ī is called optional time with respect to the filtration
(Ft)t∈I provided that

{τ < t} ∈ Ft
for all t ∈ I. Moreover,

Fτ+ := {A ∈ F : A ∩ {τ < t} ∈ Ft for all t ∈ I}.
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It should be noted that the constant time τ ≡ T is an optional time,
so that in the case I = [0, T ] we get (with our convention that F = FT )
FT+ = FT .

One might say that Fτ contains those events that can be decided until
time τ and that Fτ+ contains those events that can be decided right after
the random time τ occurs. Let us give a simple example of an optional time
that is not a stopping time:

Example 2.5.2. Let I = [0,∞), Ω := {1, 2, 3}, F = 2Ω, P({k}) = 1/3, and
Xt(ω) := (t− ω)+ for t ≥ 0. Then the natural filtration computes as

FXt =


{∅,Ω} : t ∈ [0, 1]

{∅,Ω, {1} , {2, 3}} : t ∈ (1, 2]
2Ω : t > 2

.

Let τ(ω) := inf {t > 0 : Xt(ω) > 0} so that τ(ω) = ω. The time τ is not a
stopping time since

{τ ≤ 1} = {1} 6∈ F1.

But it is an optional time since {τ < t} ∈ Ft for all t ≥ 0.

Proposition 2.5.3. Let τ : Ω→ Ī be a stopping time. Then

(i) the system of sets Fτ is a σ-algebra,

(ii) one has {τ 5 s} ∈ Fτ for s ∈ I so that τ : Ω→ Ī is an Fτ -measurable
random variable.

Proof. (i) Since ∅ ∩ {τ ≤ t} = ∅ ∈ Ft we have ∅ ∈ Fτ . Assume that
B1, B2, ... ∈ Fτ . Then

(
∞⋃
n=1

Bn) ∩ {τ 5 t} =
∞⋃
n=1

(Bn ∩ {τ 5 t}) ∈ Ft.

Finally, for B ∈ Fτ we get that

Bc ∩ {τ 5 t} = {τ 5 t} \ (B ∩ {τ 5 t}) ∈ Ft.

(ii) For s, t ∈ I we get that

{τ 5 s} ∩ {τ 5 t} = {τ 5 min {s, t}} ∈ Fmin{s,t} ⊆ Ft.

We conclude the proof by remarking that the system (−∞, t], t ∈ R, gen-
erates the Borel σ-algebra and that (for example) {τ ≤ t} = ∅ ∈ Fτ for
t < 0.
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The pendant for the optional times reads as

Proposition 2.5.4. Let τ : Ω→ Ī be an optional time. Then

(i) the system of sets Fτ+ is a σ-algebra,

(ii) one has {τ < s} ∈ Fτ+ for all s ∈ I so that τ is an extended Fτ+-
measurable random variable.

The proof is an exercise. Optional times are stopping times with respect
to the filtration (Ft+)t∈I :

Proposition 2.5.5. Let (Ω,F) be a measurable space equipped with a filtra-
tion (Ft)t∈I and τ : Ω→ Ī.

(i) Then τ is an optional time if and only if, for all t ∈ I,

{τ ≤ t} ∈ Ft+ :=
⋂

s∈(t,S)

Fs

with 0 ≤ t < S := ∞ if I = [0,∞) and 0 ≤ t < S := T if I = [0, T ],
and with the convention that FT+ = FT if I = [0, T ].

(ii) If τ is an optional time, then A ∈ Fτ+ if and only if A∩{τ ≤ t} ∈ Ft+
for t ∈ I.

The proof is an exercise. The general relation between stopping and
optional times is as follows:

Proposition 2.5.6. (i) Every stopping time τ is an optional time and
Fτ ⊆ Fτ+.

(ii) If the filtration is right-continuous, then any optional time τ is a stop-
ping time and Fτ = Fτ+.

Proof. (i) This follows from

{τ < t} =
∞⋃
n=1

{
τ ≤ t− 1

n

}
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and {
τ ≤ t− 1

n

}
∈ Fmax{0,t− 1

n} ⊆ Ft.

Hence τ is an optional time. Let A ∈ Fτ so that by definition A∩{τ ≤ t} ∈ Ft
for all t ∈ I. Hence

A ∩ {τ < t} =
∞⋃
n=1

A ∩
{
τ ≤ t− 1

n

}
∈ Ft

because

A ∩
{
τ ≤ t− 1

n

}
∈ Fmax{0,t− 1

n} ⊆ Ft.

(ii) For the second assertion we have to check that Fτ+ ⊆ Fτ . Given A ∈ F ,
from Proposition 2.5.5 we know that A ∈ Fτ+ if and only if A∩{τ ≤ t} ∈ Ft+.
But, by assumption Ft = Ft+ , so that the statement follows.

Now we consider two basic examples.

Example 2.5.7. Let I = [0,∞), X = (Xt)t≥0 be continuous and adapted,
Γ ⊆ R be non-empty, and define the hitting time

τΓ := inf{t = 0 : Xt ∈ Γ}

with the convention that inf ∅ :=∞.

(i) If Γ is open, then τΓ is an optional time.

(ii) If Γ is closed, then τΓ is a stopping time.

Proof. We only show (ii), part (i) is an exercise. Given t ≥ 0 we have to
show that {τΓ 5 t} ∈ Ft. The condition τΓ(ω) ≤ t implies the existence of a
sequence t1 ≥ t2 ≥ t3 ≥ · · · ≥ 0 such that Xtn(ω) ∈ Γ and s := limn tn ≤ t.
By the continuity of X we have Xs(ω) = limnXtn(ω) and by the closeness of
Γ that Xs(ω) ∈ Γ. Hence

{τΓ 5 t} = {ω ∈ Ω : there exists an s ∈ [0, t] such that Xs(ω) ∈ Γ}
= {ω ∈ Ω : inf

s∈Q, s≤t
d(Xs(ω),Γ) = 0} ∈ Ft

where d(x,Γ) := inf {|x− y| : y ∈ Γ} is a continuous function, note that

|d(x,Γ)− d(y,Γ)| ≤ |x− y|,

which implies that ω 7→ d(Xs(ω),Γ) is Fs-measurable.
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2.6 A short excursion to Markov processes

To give a rigorous justification of the reflection principle one would need to
introduce the strong Markov property. In this course we restrict ourselves to
the introduction of the basic concept. Because of the continuity properties
of the filtration (right-hand side continuous or not) we first work with the
optional times and not with the, probably more intuitive, stopping times.

Before we begin, we make a general observation: Given a measurable
process X = (Xt)t≥0 and an optional time τ and a fixed S ∈ [0,∞), the map
ω 7→ Xτ(ω)∧S(ω) is measurable because it can be written as Xτ(ω)∧S(ω) =
X ◦ΦS(ω) where ΦS : Ω→ [0, S]×Ω is given by ΦS(ω) := (τ(ω)∧ S, ω) and
XS : [0, T ]×Ω→ R with X(t, ω) = Xt(ω). By (Xτ )(ω) = limn→∞(Xτ∧n)(ω)
it follows that that Xτ is measurable whenever τ(ω) <∞ for all ω ∈ Ω.

Definition 2.6.1. Let (Ω,F ,P; (Ft)t≥0) be a stochastic basis and X =
(Xt)t≥0, Xt : Ω→ R, be a stochastic process.

(i) The process X is a Markov process provided that X is adapted and for
all s, t ≥ 0 and B ∈ B(R) one has that

P(Xs+t ∈ B|Fs) = P(Xs+t ∈ B|σ(Xs)) a.s.

(ii) The process X is a strong Markov process provided that X is progres-
sively measurable and for all t ≥ 0, optional times τ : Ω→ [0,∞], and
B ∈ B(R) one has that, a.s.,

P({Xτ+t ∈ B} ∩ {τ <∞} |Fτ+) = P({Xτ+t ∈ B} ∩ {τ <∞} |σ(Xτ )),

where σ(Xτ ) := σ(τ−1(∞), {X−1
τ (B) ∩ {τ <∞} : B ∈ B(R)}).

To make the definition rigorous we need

Lemma 2.6.2. Let X be progressively measurable and τ : Ω→ [0,∞] be an
optional time, then

X−1
τ (B) ∩ {τ <∞} ∈ Fτ+

for all B ∈ B(R).

Proof. Note that X−1
τ (B)∩{τ <∞}∩{τ < t} = X−1

τ∧t(B)∩{τ < t} ∈ Ft.
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We give an easy example for a Markov process which is not a strong
Markov process.

Example 2.6.3. We consider Ω := {−1, 1}, F := 2Ω, and P({−1}) =
P({1}) = 1/2. As stochastic process we take Xt(1) := max {t− 1, 0}
and Xt(−1) := min {−t+ 1, 0}. The filtration is the natural filtration
Ft := σ (Xs : s ∈ [0, t]). Taking the optional time τ ≡ 1, one checks that
σ(Xτ ) = {∅,Ω} and Fτ+ = 2Ω. But this gives that

P(X2 ∈ B|Fτ+) = P(X2 ∈ B|σ(Xτ )) a.s.

cannot be true for all B ∈ B(R).

For us, the main (positive) example is

Proposition 2.6.4. Assume a stochastic basis (Ω,F ,P; (Ft)t≥0) and an
(Ft)t≥0-Brownian motion B = (Bt)t≥0 like in Definition 2.4.5. Then B is a
strong Markov process.

Finally, without proof we state

Proposition 2.6.5. Assume a process X = (Xt)t≥0 which is a strong Markov
process with respect to its natural filtration (FXt )t≥0 with FXt := σ(Xu : u ∈
[0, t]). Then the augmented filtration is right continuous.



Chapter 3

Stochastic integration

Given a Brownian motion B = (Bt)t≥0, we would like to define∫ T

0

LtdBt

for a large class of stochastic processes L = (Lt)t≥0. A first approach would
be to write ∫ T

0

LtdBt =

∫ T

0

Lt
dBt

dt
dt.

However this is not possible (at least in this naive form) because of the
following

Proposition 3.0.1 (Paley, Wiener-Zygmund). Given a standard Brow-
nian motion in the sense of Definition 2.4.1, then the set

{ω ∈ Ω : t→ Bt(ω) is nowhere differentiable }

contains a set of measure one.

So we have to proceed differently. We will first define the stochastic
integral for simple processes and extend then the definition to an appropriate
class of processes. Throughout the whole section we assume that

• the probability space (Ω,F ,P) is complete,

• the filtration (Ft)t≥0 is right-continuous that means
⋂
ε>0Ft+ε = Ft for

all t ≥ 0,

43
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• all null-sets of F are contained in F0,

• the process B = (Bt)t≥0 is an (Ft)t≥0-Brownian motion.

3.1 Definition of the stochastic integral

First we need simple processes we are able to integrate:

Definition 3.1.1. A stochastic process L = (Lt)t≥0 is called simple provided
that there exists

(i) a sequence 0 = t0 < t1 < t2 < · · · with limn tn =∞,

(ii) Fti-measurable random variables vi : Ω → R, i = 0, 1, ..., with
supi,ω |vi(ω)| <∞,

such that

Lt(ω) =
∞∑
i=1

χ(ti−1,ti](t)vi−1(ω).

The class of these processes is denoted by L0.

Now we can define our first stochastic integral:

Definition 3.1.2 (Stochastic integrals for L0-integrands). For L ∈ L0 and
t ≥ 0 we let

It(L)(ω) :=
∞∑
i=1

vi−1(ω)
(
Bti∧t(ω)−Bti−1∧t(ω)

)
.

For the investigation of the stochastic integral and its extension we need
the following class of martingales:

Definition 3.1.3. A martingale M = (Mt)t≥0 belongs to Mc
2 provided that

(i) E|Mt|2 <∞ for all t ≥ 0,

(ii) the trajectories t→Mt(ω) are continuous for all ω ∈ Ω.

In case that M0 ≡ 0 we write M ∈Mc,0
2 .
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Example 3.1.4. For the Brownian motion one has B = (Bt)t≥0 ∈Mc,0
2 .

Example 3.1.5. For the geometric Brownian motion S = (St)t≥0 defined by

St := eBt−
t
2 ,

one has S = (St)t≥0 ∈Mc
2.

Proof. For all 0 < p <∞ one has that ESpt <∞ since, for t > 0,

ESpt =

∫
R
epxe−

x2

2t
dx√
2πt

e−p
t
2

=

∫
R
e−

(x−tp)2
2t

dx√
2πt

e
tp2

2
−p t

2

= e
tp2

2
−p t

2 .

If Bt is Ft-measurable, then eBt−
t
2 is as a deterministic functional of Bt

measurable with respect to Ft as well. Finally letting 0 ≤ s < t < ∞, we
conclude by (a.s.)

E(St|Fs) = E(eBt−
t
2 |Fs)

= E(e(Bt−Bs)− t−s2 eBs−
s
2 |Fs)

= SsE(e(Bt−Bs)− t−s2 |Fs)
= SsEe(Bt−Bs)− t−s2

= Ss.

Proposition 3.1.6. For L ∈ L0 one has that (It(L))t≥0 ∈Mc,0
2 .

Proof. By definition we have that I0(L) ≡ 0 and that the process t →
It(L)(ω) is continuous for all ω ∈ Ω. Since

vi−1(Bti∧t −Bti−1∧t) =

{
0 : t ≤ ti−1

vi−1(Bti∧t −Bti−1
) : t > ti−1

we get that It(L) is Ft-measurable. Now we observe that

E|vi−1(Bb −Bti−1
)|2 ≤ c2E|Bb −Bti−1

|2 = c2(b− ti−1)
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for ti−1 ≤ b <∞ so that

(
E|It(L)|2

) 1
2 ≤

E

∣∣∣∣∣
n0∑
i=1

vi−1(Bti∧t −Bti−1∧t)

∣∣∣∣∣
2
 1

2

≤
n0∑
i=1

(
E|vi−1(Bti∧t −Bti−1∧t)|2

) 1
2 <∞

whenever tn0−1 < t ≤ tn0 . It remains to show the martingale property

E(It(L)|Fs) = Is(L) a.s.

for 0 ≤ s ≤ t <∞. We only check 0 < s ≤ t <∞ and find n0 and m0 such
that tn0−1 < t ≤ tn0 and tm0−1 < s ≤ tm0 . Then, a.s.,

E(It(L)|Fs) = E

(
n0∑
i=1

vi−1(Bti∧t −Bti−1∧t)|Fs

)

=

n0∑
i=1

E
(
vi−1(Bti∧t −Bti−1∧t)|Fs

)
.

For 1 ≤ i ≤ m0 − 1 we get

vi−1(Bti∧t −Bti−1∧t) = vi−1(Bti −Bti−1
) = vi−1(Bti∧s −Bti−1∧s)

which is Fs-measurable. In the case n0 ≥ i ≥ m0 + 1 we may deduce, a.s.,
that

E(vi−1(Bti∧t −Bti−1∧t)|Fs) = E
(
E(vi−1(Bti∧t −Bti−1∧t)|Fti−1

)|Fs
)

= E
(
vi−1E(Bti∧t −Bti−1∧t|Fti−1

)|Fs
)

= E
(
vi−1(Bti∧t∧ti−1

−Bti−1∧t)|Fs
)

= 0.

Finally, for i = m0 one obtains, a.s., that

E(vi−1(Bti∧t −Bti−1∧t)|Fs) = vi−1E(Bti∧t −Bti−1∧t|Fs)
= vi−1(Bti∧t∧s −Bti−1

)

= vi−1(Bti∧s −Bti−1∧s).
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Now we turn to the Itô-isometry for stochastic integrals over simple inte-
grands. Before we do this, we need the following

Lemma 3.1.7. Let M = (Mk)
N
k=0 be a martingale with respect to (Gk)Nk=0

such that EM2
k <∞ for k = 0, ..., N . Then, a.s.,

E
(
(MN −Mn)2|Gn

)
= E

(
N∑

l=n+1

(dMl)
2|Gn

)

for 0 ≤ n < N where dMl := Ml −Ml−1.

Proof. We have that

E(MN −Mn)2|Gn) =
N∑

i,j=n+1

E(dMidMj|Gn).

We are done if we can show that

E(dMidMj|Fn) = 0 a.s.

for n < i < j ≤ N . But this follows from, a.s.,

E(dMidMj|Gn) = E (E(dMidMj|Gi)|Gn) = E (dMiE(dMj|Gi)|Gn) = 0.

Now we can prove our first Itô-isometry:

Proposition 3.1.8. For L ∈ L0 and 0 ≤ s ≤ t <∞ one has that

E
(
[It(L)− Is(L)]2|Fs

)
= E

(∫ t

s

L2
udu|Fs

)
a.s.

Proof. By introducing new time knots we can assume without loss of gener-
ality that s = tn and t = tN . Let

Mk := Itk(L) and Gk := Ftk
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so that (Mk)
N
k=0 is a martingale with respect to (Gk)Nk=0. Hence, a.s.,

E
(
[It(L)− Is(L)]2|Fs

)
= E

(
[MN −Mn]2|Gn

)
= E

(
N∑

l=n+1

(dMl)
2|Gn

)

= E

(
N∑

l=n+1

v2
l−1(Btl −Btl−1

)2|Ftn

)

=
N∑

l=n+1

E
(
E(v2

l−1(Btl −Btl−1
)2|Ftl−1

)|Ftn
)

=
N∑

l=n+1

E
(
v2
l−1E((Btl −Btl−1

)2|Ftl−1
)|Ftn

)
=

N∑
l=n+1

E
(
v2
l−1E(Btl −Btl−1

)2|Ftn
)

=
N∑

l=n+1

E
(
v2
l−1(tl − tl−1)|Ftn

)
= E

(∫ tN

tn

L2
udu|Ftn

)
= E

(∫ t

s

L2
udu|Fs

)
.

Proposition 3.1.9. For K,L ∈ L0 and α, β ∈ R one has that

It(αL+ βK) = αIt(L) + βIt(K).

Now we want to extend this to a larger class of integrands. So far we
have a map

I : L0 −→Mc,0
2

which is defined ω-wise.
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Definition 3.1.10. Let L2
1 be the set of all progressively measurable pro-

cesses L = (Lt)t≥0, Lt : Ω→ R, such that

[L]T :=

(
E
∫ T

0

L2
tdt

) 1
2

<∞ for all T > 0.

Moreover, we let

d(K,L) :=
∞∑
n=1

2−n min {1, [K − L]n} for K,L ∈ L2.

Proposition 3.1.11. One has that L0 ⊆ L2. Moreover the inclusion is
dense, that means for all L ∈ L2 there is a sequence (L(n))∞n=1 ⊆ L0 such that

lim
n
d(L(n), L) = 0.

Proof. (a) Assume that supt,ω |Lt(ω)| <∞ and that t→ Lt(ω) is continuous
for all ω ∈ Ω. For T > 0 we define

L
(n)
t (ω) :=

2n−1∑
k=0

L kT
2n

(ω)χ( kT2n ,
(k+1)T

2n ](t).

Then limn→∞ L
(n)
t (ω) = Lt(ω) for all t ∈ (0, T ] and, by dominated conver-

gence,

lim
n→∞

E
∫ T

0

(L
(n)
t − Lt)2dt = 0.

(b) Let L be progressively measurable with supt,ω |Lt(ω)| <∞ and let T > 0.
For t ≥ 0 and m = 1, 2, ... define

L̃
(m)
t (ω) := m

∫ t

(t− 1
m)

+
Ls(ω)ds.

Hence (L̃(m))t≥0 is continuous and adapted (we can write L̃
(m)
t (ω) =

m[Kt(ω)−K(t− 1
m

)∨0(ω)] with Kt(ω) :=
∫ t∧T

0
Ls(ω)ds). Moreover,

|L̃(m)
t (ω)| ≤ sup

s≥0
|Ls(ω)|

1Working with L2 we use equivalence classes: K ∼ L if (λ × P)((t, ω) ∈ [0,∞) × Ω :
Lt(ω) 6= Kt(ω)) = 0.
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and we can apply step (a) and find

L̃(m,n) =
(
L̃

(m,n)
t

)
t≥0
∈ L0

such that

lim
n→∞

E
∫ T

0

|L̃(m,n)
t − L̃(m)

t |2dt = 0. (3.1)

Let

A :=
{

(t, ω) ∈ [0, T ]× Ω : lim
m→∞

L̃
(m)
t (ω) = Lt(ω)

}c
∈ B([0, T ])⊗FT .

Let
Aω := {t ∈ [0, T ] : (t, ω) ∈ A} .

Fubini’s theorem implies that Aω ∈ B([0, T ]). Moreover, t ∈ Acω whenever

L̃
(m)
t (ω) = m

∫ t

(t− 1
m)∨0

Ls(ω)ds→m Lt(ω).

By the fundamental theorem of calculus we get that

λ(Acω) = T or λ(Aω) = 0

where λ is the Lebesgue measure. Hence by Fubini’s theorem,

(λ× P)(A) = 0

so that by majorized convergence,

lim
m

E
∫ T

0

|L̃(m)
t − Lt|2dt = 0. (3.2)

Combining (3.1) and (3.2) gives the existence of L(n) = (L
(n)
t )t≥0 ∈ L0 such

that

lim
n

E
∫ T

0

|L(n)
t − Lt|2dt = 0.

(c) From step (b) we get that there are L(N) = (L
(N)
t )t≥0 ∈ L0 such that

E
∫ N

0

∣∣∣L(N)
t − Lt

∣∣∣2 dt ≤ 1

N2
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for N = 1, 2, ... Hence

[L(N) − L]T ≤
1

N
for N ≥ T

and d(L(N), L)→N 0 as N →∞.
(d) Now we remove the condition that L is bounded. For k = 1, 2, ... we

let

L
(k)
t :=


k : Lt ≥ k
Lt : Lt ∈ [−k, k]
−k : Lt ≤ −k

.

By dominated convergence we have that [L − L(k)]T → 0 as k → ∞ for all
T > 0. But the L(k) can be approximated by elements of L0 so that we are
done.

Proposition 3.1.12. The map I : L0 → Mc,0
2 can be extended to a map

J : L2 →Mc,0
2 such that the following is true:

(i) Linearity: for α, β ∈ R and K,L ∈ L2 one has

Jt(αK + βL) = αJt(K) + βJt(L)

for t ≥ 0 a.s.

(ii) Extension property: if L ∈ L0, then

It(L) = Jt(L), t ≥ 0, a.s.

(iii) Isometry property: if L ∈ L2, then, for t ≥ 0,

‖Jt(L)‖L2 =

(
E
∫ t

0

L2
udu

) 1
2

.

(iv) Continuity property: if A(n), L ∈ L2 such that d(A(n), L) → 0 as n →
∞, then

E sup
t∈[0,T ]

|Jt(L)− Jt(A(n))|2 →n 0.

(v) Uniqueness property: if J ′ : L2 → Mc,0
2 is another mapping satisfying

(i),...,(iv), then one has for all T > 0 that

P(Jt(L) = J ′t(L) : t ≥ 0) = 1 for all L ∈ L2.
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Before we prove this proposition let us turn to a simple example, the
Wiener integral.

Example 3.1.13. For a continuous function L : [0,∞)→ R the process

Xt := Jt(L)

is a Gaussian process with mean zero and covariance

Γ(s, t) = EXsXt =

∫ min{s,t}

0

L2
udu.

Proof. (a) First we remark that an L2-limit of Gaussian random variables is
again a Gaussian random variable, which is left as an exercise.

(b) Defining

L
(n)
t :=

∞∑
k=1

χ( k−1
2n

, k
2n ](t)L

(
k − 1

2n

)
we obtain that d(L,L(n))→n 0. Hence by Proposition 3.1.12 (iv)

Jt(L
(n))→L2 Jt(L).

But Jt(L
(n)) = It(L

(n)) are Gaussian random variables so Jt(L) is Gaussian
by step (a) as well.

(c) To check that we have a Gaussian process we let 0 ≤ t1 ≤ · · · ≤ tn ≤ T
and α1, ..., αn ∈ R. It is easy to see that

n∑
k=1

αkJtk(L
(n))

is a Gaussian random variable which converges in L2 to the random variable∑n
k=1 αkJtk(L). Hence the latter is Gaussian and we have a Gaussian process.
(d) To get the covariance structure we simply use the Itô-isometry since

one can show that
Jr(L) = JT (K(r)) a.s.

for K
(r)
u := Lu for u ∈ [0, r] and K

(r)
u := 0 for u > r, where T ≥ r.

Next we consider our first real example.
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Example 3.1.14. One has that

Jt(B) =
1

2
(B2

t − t) for t ≥ 0 a.s.

Proof. Since the left and right-hand side are continuous processes starting in
zero we only have to show that JT (B) = 1

2
(B2

T − T ) a.s. for T > 0. Let

L
(n)
T :=

∞∑
i=1

χ(T i−1
2n

,T i
2n ](t)BT i−1

2n
.

By majorized convergence one can show that

lim
n
d(L(n), B) = 0.

In the next step we would need to show that

JT (L(n)) =
2n∑
i=1

BT i−1
2n

(BT i
2n
−BT i−1

2n
)

(note that L(n) is not a simple integrand according to our definition). This
can be easily done by a truncation of the coefficients BT i−1

2n
which brings us

back to the simple integrands. So we are left to show that

lim
n→∞

E

∣∣∣∣∣
2n∑
i=1

BT i−1
2n

(BT i
2n
−BT i−1

2n
)− 1

2
(B2

T − T )

∣∣∣∣∣
2

= 0.

Let N = 2n. Then

E

∣∣∣∣∣
N∑
i=1

BT i−1
N

(BT i
N
−BT i−1

N
)− 1

2
(B2

T − T )

∣∣∣∣∣
2

= E

∣∣∣∣∣
N∑
i=1

[
BT i−1

N
(BT i

N
−BT i−1

N
)− 1

2

(
BT i

N

)2

+
1

2

(
BT i−1

N

)2
]

+
T

2

∣∣∣∣∣
2

=
1

4
E

∣∣∣∣∣T −
N∑
i=1

[
BT i

N
−BT i−1

N

]2

∣∣∣∣∣
2
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=
T 2

4
E

∣∣∣∣∣1−
N∑
i=1

[
B i

N
−B i−1

N

]2

∣∣∣∣∣
2

=
T 2

4
E

∣∣∣∣∣
N∑
i=1

[[
B i

N
−B i−1

N

]2

− 1

N

]∣∣∣∣∣
2

=
T 2

4

N∑
i=1

E
∣∣∣∣[[B i

N
−B i−1

N

]2

− 1

N

]∣∣∣∣2
=

T 2

4

N∑
i=1

[EB4
1 − 1]

1

N2
→N 0.

Looking at the above proof we also got

Proposition 3.1.15. For the Brownian motion B = (Bt)t≥0 and T ≥ 0 one
has that

lim
N→∞

N∑
i=1

[
BT i

N
−BT i−1

N

]2

= T

where the convergence in probability is taken.

To proceed we need

Proposition 3.1.16 (Doob’s maximal inequalities). Let M = (Mt)t≥0 be
a right-continuous martingale or a right-continuous positive sub-martingale
and let M∗

t := sups∈[0,t] |Ms|. Then one has, for λ, t ≥ 0 and p ∈ (1,∞), that

λP(M∗
t = λ) ≤ E|Mt|,

and

E(M∗
t )p 5

(
p

p− 1

)p
E|Mt|p.

For the proof we use the discrete time version proved in [7]:
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Lemma 3.1.17. Let M = (Mn)Nn=0 be martingale or positive sub-martingale
and let M∗

n := supk=0,...,n |Mk|. Then one has, for λ ≥ 0, n = 0, ..., N , and
p ∈ (1,∞), that

λP(M∗
n = λ) ≤ E|Mn|,

and

E(M∗
n)p 5

(
p

p− 1

)p
E|Mn|p.

Proof of Proposition 3.1.16. First we remark that M∗
t : Ω → R is measur-

able, since
M∗

t = sup
s∈[0,t]∩Q

(|Ms| ∨ |Mt|)

which is a countable supremum of measurable functions. From Lemma 3.1.17
it follows that, for

Mn,∗
t := sup

s=
k

2n
t

k=0,...,2n

|Ms|,

one has that

λP(Mn,∗
t ≥ λ) ≤ E|Mt| and E(Mn,∗

t )p ≤
(

p
p−1

)p
E|Mt|p.

Since Mn,∗
t ↑M∗

t a.s. as n→∞ we are done.

Proof of Proposition 3.1.12. (a) Before we really start, we show that (ii) and
(iv) imply (v): we find L(n) ∈ L0 with d(L,L(n))→n 0 where we use Propo-
sition 3.1.11. Hence

Jt(L) =L2 lim
n
Jt(L

(n)) =L2 lim
n
It(L

(n)) =L2 lim
n
J ′t(L

(n)) =L2 J
′
t(L).

Since (Jt(L))t≥0 and (J ′t(L))t≥0 are continuous, the processes are indistin-
guishable.

(b) Conditions (ii) and (iv) imply (i): By Proposition 3.1.11 we find
K(n), L(n) ∈ L0 such that d(K,K(n)) →n 0 and d(L,L(n)) →n 0. Conse-
quently,

Jt(αK + βL) =L2 lim
n
Jt(αK

(n) + βL(n))
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=L2 lim
n
It(αK

(n) + βL(n))

=L2 lim
n

[
αIt(K

(n)) + βIt(L
(n))
]

=L2 α lim
n
It(K

(n)) + β lim
n
It(L

(n))

=L2 α lim
n
Jt(K

(n)) + β lim
n
Jt(L

(n))

=L2 αJt(K) + βJt(L).

Since the processes on both sides are continuous both sides are indistinguish-
able and we are done.

(c) Hence the main part of the proof is to prove the existence of an
extension J of I such that assertions (ii), (iii), and (iv) are satisfied. We
shall fix the sequence L(n) ∈ L0 from step (a) where we assume w.l.o.g. that
L(1) := 0 (which is convenient later for us).

1. Step: for all ε > 0 and t ≥ 0 there is an n(ε, t) such that

E|It(L(n))− It(L(m))|2 =

∫ t

0

E|L(n)
u − L(m)

u |2du ≤ ε2

for m,n ≥ n(ε, t) where we used Itô’s isometry for simple processes. Hence
there exists some Yt ∈ L2 such that

lim
n
It(L

(n)) =L2 Yt.

Assuming a different sequence K(n) ∈ L0 we get that

lim
n
It(K

(n)) =L2 Xt.

However,

E|Yt −Xt|2 = lim
n

E|It(L(n))− It(K(n))|2

= lim
n

∫ t

0

E|L(n)
u −K(n)

u |2du

= 0

so that the process (Xt)t≥0 is unique as a process in L2.
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2. Step: We show that there is a path-wise continuous process (Mt)t≥0

with M0 ≡ 0 such that Xt = Mt a.s. for t ≥ 0. It is clear that M is unique
up to indistinguishability if it exists. By Doob’s maximal inequality we have

E sup
t∈[0,N ]

|It(L(n))− It(L(m))|2 ≤ 4E|IN(L(n))− IN(L(m))|2

= 4E
∫ N

0

|L(n)
t − L

(m)
t |2dt

< 4ε2

for m,n ≥ n(ε,N). Hence we find 1 = n0 < n1 < n2 < · · · (depending on
N) such that

E sup
t∈[0,N ]

|It
(
L(nk+1)

)
− It

(
L(nk)

)
|2 ≤ 1

2k+1

for k = 1, 2, ... Letting

JNk := sup
t∈[0,N ]

|It
(
L(nk+1)

)
− It

(
L(nk)

)
|

implies
∞∑
k=0

(
E|JNk |2

) 1
2 <∞ and P

(
∞∑
k=0

JNk <∞

)
= 1.

Setting ΩN :=
{
ω ∈ Ω :

∑∞
k=0 J

N
k (ω) <∞

}
, we define

M
(N)
t (ω) :=

{ ∑∞
k=0

[
It(L

(nk+1))− It(L(nk))
]

(ω) : ω ∈ ΩN

0 : ω 6∈ ΩN

for t ≥ 0. Now we see that the process (M
(N)
t )t∈[0,N ] is path-wise continuous

and that

Xt =L2

∞∑
k=0

[
It(L

(nk+1))− It(L(nk))
]

= M
(N)
t

for t ∈ [0, N ]. With a standard trick we find the process we are looking for:
define, for 0 < N ≤M <∞,

ΩN,M :=
{
ω ∈ Ω : M

(N)
t (ω) = M

(M)
t (ω) for all t ∈ [0, N ]

}
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so that P(ΩN,M) = 1 since (M
(N)
t )t∈[0,N ] and (M

(M)
t )t∈[0,N ] are continuous

modifications of (Xt)t∈[0,N ]. Letting

Ω̃ :=
⋂

0<N≤M<∞

ΩN,M

we obtain that P(Ω̃) = 1 and set

Mt(ω) :=

{
M

(N)
t (ω) : ω ∈ Ω̃ and t ∈ [0, N ]

0 : ω 6∈ Ω̃
.

By changing the process on a null-set (we have the usual conditions) we may
assume that M0 ≡ 0. Since M is the L2-limit of martingales, we finally end
up with

M ∈Mc,0
2 .

3. Step, Property (ii): this follows by construction since we can take Ln =
L in this case.

4. Step, Property (iii): since∣∣‖Mt‖L2 − ‖It(L(n))‖L2

∣∣ ≤ ‖Mt − It(L(n))‖L2 →n 0

and∣∣∣∣∣
(
E
∫ t

0

L2
udu

) 1
2

−
(
E
∫ t

0

(L(n)
u )2du

) 1
2

∣∣∣∣∣ ≤
∣∣∣∣∣
(
E
∫ t

0

(Lu − L(n)
u )2du

) 1
2

∣∣∣∣∣→ 0

and the Itô isometry for the simple processes we get (iii).
5. Step, Property (iv): Denote now Mt by Jt(L). By Doob’s inequality

E sup
t∈[0,T ]

|Jt(L)− Jt(A(n))|2 ≤ 4E|JT (L)− JT (A(n))|2

so that it remains to show that

E|JT (L)− JT (A(n))|2 →n 0.

Find A(n,m), L(m) ∈ L0 such that d(A(n,m), A(n)) →m 0 and d(L(n), L) →n 0.
Then we find a sub-sequence mn such that

d(A(n,mn), A(n))→n 0 and d(A(n,mn), L(n))→n 0.
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We conclude with

‖JT (L)− JT (A(n))‖L2

≤ ‖JT (L)− JT (L(n))‖L2 + ‖JT (L(n))− JT (A(n,mn))‖L2

+‖JT (A(n,mn))− JT (A(n))‖L2

where the first and last term go to zero by construction of JT and the middle
term by Itô’s isometry for simple integrands.

We are close to the stochastic integral we need to have. In the last step
we carry out a localizing procedure to extend the integral from L2 to Lloc

2 .
For this purpose we first need

Lemma 3.1.18. For any stopping time τ : Ω → [0,∞) and progressively
measurable process L = (Lt)t≥0 one has that Lτ := (Ltχ{t≤τ})t≥0 is progres-
sively measurable.

Definition 3.1.19. (i) Let Lloc
2 be the set of all progressively measurable

processes L = (Lt)t≥0 such that

P
(
ω ∈ Ω :

∫ t

0

L2
u(ω)du <∞

)
= 1 for all t ≥ 0.

(ii) A sequence (τn)∞n=0 of stopping times is called localizing for L =
(Lt)t≥0 ∈ Lloc

2 provided that

(a) 0 ≤ τ0(ω) ≤ τ1(ω) ≤ τ2(ω) ≤ · · · ≤ ∞ and limn τn(ω) = ∞ for all
ω ∈ Ω,

(b) Lτn ∈ L2 for all n = 0, 1, 2, ...

Remark 3.1.20. (i) One has that L2 ⊆ Lloc
2 since

E
∫ t

0

L2
udu <∞

implies by Fubini’s theorem that∫ t

0

L2
udu <∞ a.s.
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(ii) For every L ∈ Lloc
2 there exists a localizing sequence. Let N = 1, 2, ...

and

ΩN :=

{
ω ∈ Ω :

∫ N

0

L2
u(ω)du <∞

}
.

Then P (
⋂∞
N=1 ΩN) = 1 and we may set

τn(ω) :=

{
inf
{
t ≥ 0 :

∫ t
0
L2
u(ω)du ≥ n

}
: ω ∈

⋂∞
N=1 ΩN

∞ : else

because t→
∫ t

0
L2
u(ω)du is a continuous function defined on [0,∞) with

values in [0,∞) for ω ∈
⋂∞
N=1 ΩN .

Next we need

Lemma 3.1.21. Assume L ∈ Lloc
2 . Then there is a unique (up to indistin-

guishability) adapted and continuous process X = (Xt)t≥0 with X0 ≡ 0 such
that for all localizing sequences (τn)∞n=0 of L one has

P
(
Jt(L

τn) = Xt, t ∈ [0, τn]
)

= 1 for n = 0, 1, 2, ...

Definition 3.1.22. Let L ∈ Lloc
2 . The process X obtained in Lemma 3.1.21

is denoted by (∫ t

0

LudBu

)
t≥0

and is called stochastic integral of (the integrand) L with respect to (the
integrator) B. Moreover, for 0 ≤ s ≤ t <∞ we let∫ t

s

LudBu =

∫
(s,t]

LudBu := Xt −Xs.

Before we summarize some properties of stochastic integrals we introduce
local martingales.

Definition 3.1.23. A continuous adapted process M = (Mt)t≥0 with M0 ≡ 0
is called local martingale (we shall write M ∈Mc,0

loc) provided that there exists
an increasing sequence (σn)∞n=0 of stopping times 0 ≤ σ0(ω) ≤ σ1(ω) ≤ · · · ≤
∞ with limn σn(ω) =∞ such that Mσn := (Mt∧σn)t≥0 is a martingale for all
n = 0, 1, 2, ...
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Surprisingly it is not so easy to find local martingales which are not
martingales. We indicate a construction, but do not go into any details. The
example is intended as motivation for Itô’s formula presented in the next
section.

Example 3.1.24. Given d = 1, 2, ... we let (Wt)t≥0 be the d-dimensional
standard Brownian motion where Wt := (Bt,1, ..., Bt,d), W0 ≡ 0, and (Bt,i)t≥0

are independent Brownian motions. The filtration is obtained as in the one-
dimensional case as the augmentation of the natural filtration. Let d = 3
and

Mt :=
1

|x+Wt|
with |x| > 0 where | · | is the euclidean norm on Rd. Then M = (Mt)t≥0

is a local martingale, but not a martingale. The process |x + Wt| is a 3-
dimensional Bessel process starting in |x|.

Proof. To justify the construction one would need the following:
(a) For a d-dimensional standard Brownian motion W with d ≥ 2 the

sets {y} with y 6= 0 are polar sets, that means

P(τy <∞) = 0 with τy := inf {t ≥ 0 : Wt = y} .

(b) For d ≥ 3 one has that P(limt→∞ |Wt| =∞) = 1.
(c) Assuming that M is a martingale we would get

EMt = EM0 =
1

|x|
.

But a direct computation yields to

E
1

|x+Wt|
= E

1

|x+
√
t(g1, g2, g3)|

→t→∞ 0

where g1, g2, g3 ∼ N(0, 1) are independent.
(d) How to show that M is a local martingale? This gives us a first

impression of Itô-formula which will read for f(ξ1, ξ2, ξ3) := 1√
ξ2
1+ξ2

2+ξ2
3

and

Xt := x+ (Bt,1, Bt,2, Bt,3) as

f(Xt) = f(x) +
3∑
i=1

∫ t

0

∂f

∂xi
(Xu)dBu,i +

1

2

∫ t

0

(∆f)(Xu)du a.s.
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= f(x) +
3∑
i=1

∫ t

0

∂f

∂xi
(Xu)dBu,i

where the latter term turns out to be a local martingale.

Now we summarize some of the properties of our stochastic integral:

Proposition 3.1.25. .

(i) For L ∈ Lloc
2 one has

(∫ t
0
LudBu

)
t≥0
∈Mc,0

loc.

(ii) For K,L ∈ Lloc
2 and α, β ∈ R one has∫ t

0

(αKu + βLu)dBu = α

∫ t

0

KudBu + β

∫ t

0

LudBu, t ≥ 0, a.s.

(iii) Itô-Isometry: for K,L ∈ L2 and 0 ≤ s < t <∞ one has

E
(∫ t

s

KudBu

∫ t

s

LudBu|Fs
)

= E
(∫ t

s

KuLudu|Fs
)
a.s.

(iv) Given K ∈ L2, the process((∫ t

0

KudBu

)2

−
∫ t

0

K2
udu

)
t≥0

is a continuous martingale.

(v) For L ∈ Lloc
2 and a stopping time τ : Ω→ [0,∞] one has that(∫ t∧τ(ω)

0

LudBu

)
(ω) =

(∫ t

0

Luχ{u≤τ}dBu

)
(ω)

for t ≥ 0 a.s.

(vi) For 0 ≤ s ≤ t <∞, B ∈ Fs, and K ∈ Lloc
2 one has that∫ t

s

[χBKu]dBu = χB

∫ t

s

KudBu a.s.
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with the convention that∫ t

s

[χBKu]dBu :=

∫ t

s

K̃udBu

with

K̃(u) :=

{
0 : u ∈ [0, s]

χBKu : u > s
.

Proof. (iii)⇒ (iv) Let

Mt :=

∫ t

0

KudBu.

Then, a.s.,

E
(
M2

t −
∫ t

0

K2
udu|Fs

)
= E

(
(Mt −Ms +Ms)

2 −
∫ t

0

K2
udu|Fs

)
= E

(
(Mt −Ms)

2 + 2(Mt −Ms)Ms +M2
s −

∫ t

0

K2
udu|Fs

)
= E

(
(Mt −Ms)

2 −
∫ t

s

K2
udu|Fs

)
+ E (2(Mt −Ms)Ms|Fs)

+M2
s −

∫ s

0

K2
udu

= M2
s −

∫ s

0

K2
udu

where the first term is zero because of (iii) and the second one because of

E (2(Mt −Ms)Ms|Fs) = 2MsE (Mt −Ms|Fs) = 0 a.s.

(iii) Using the polarization formula ab = 1
4

((a+ b)2 − (a− b)2) it is enough
to show the assertion forK = L. We take L(n) ∈ L0 such that d(L(n), L)→n 0
and get that

E
∫ t

0

|L(n)
u − Lu|2du→n 0.

By the construction of the stochastic integral we have

E
∫ t

0

|L(n)
u − Lu|2du = E

∣∣∣∣∫ t

0

L(n)
u dBu −

∫ t

0

LudBu

∣∣∣∣2 →n 0.
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Fact 3.1.26. Let (M,Σ, µ) be a probability space and G ⊆ Σ be a sub-σ-
algebra. Assume random variables f, fn ∈ L2 such that E|fn − f |2 →n 0.
Then

E
∣∣E(f 2

n|G)− E(f 2|G)
∣∣→n 0.

Let now fn :=
∫ t
s
L

(n)
u dBu and f :=

∫ t
s
LudBu. Then

‖fn − f‖L2 =

(
E
∫ t

s

(L(n)
u − Lu)2du

) 1
2

≤
(
E
∫ t

0

(L(n)
u − Lu)2du

) 1
2

→n 0.

Hence, by our fact,

E

((∫ t

s

L(n)
u dBu

)2

|Fs

)
→L1 E

((∫ t

s

LudBu

)2

|Fs

)
.

Considering the product space Ω × [s, t] with µ := P × λ
t−s and G := Fs ⊗

B([s, t]) we get in the same way that

E
(∫ t

s

(
L(n)
u

)2
du|Fs

)
→L1 E

(∫ t

s

(Lu)
2 du|Fs

)
.

Now we can finish with Proposition 3.1.8.
We do not give the details for (i), (ii), (v) and (vi).

3.2 Itô’s formula

In calculus there is the fundamental formula

f(y) = f(x) +

∫ y

x

f ′(u)du

for, say, f ∈ C1(R) and −∞ < x < y < ∞. Is there a similar formula
for stochastic integrals? We develop such a formula for a class of processes,
called Itô-processes.

Definition 3.2.1. Let f : [0,∞)→ R be a function. Then

var(f, t) := sup
0=t0≤···≤tn=t

n∑
k=1

|f(tk)− f(tk−1)| ∈ [0,∞].
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Lemma 3.2.2.

(i) The function var(f, ·) is increasing.

(ii) If f : [0,∞)→ R is continuous, then var(f, ·) is left-continuous.

Definition 3.2.3. A stochastic process A = (At)t≥0, At : Ω → R, is called
of bounded variation provided that

var(A·(ω), t) = sup
0=t0≤···≤tn=t

n∑
k=1

|Atk(ω)− Atk−1
(ω)| <∞ a.s. for all t ≥ 0.

Lemma 3.2.4. If M = (Mt)t≥0 ∈Mc,0
2 is of bounded variation, then

P ({ω ∈ Ω : Mt(ω) = 0, t ≥ 0}) = 1.

Proof. Since M has continuous paths it is sufficient to show that

P(Mt = 0) = 1 for all t ≥ 0.

(a) Assume that
var(M·(ω), t) ≤ c <∞ a.s.

and let tni := it
n

. Then

EM2
t = E

[
n∑
i=1

[
Mtni
−Mn

ti−1

]]2

=
n∑
i=1

E
[
Mtni
−Mn

ti−1

]2

≤ Evar(M·, t) sup
i=1,...,n

∣∣∣Mtni
−Mtni−1

∣∣∣
≤ c E sup

i=1,...,n

∣∣∣Mtni
−Mtni−1

∣∣∣ .
Since

sup
i=1,...,n

∣∣∣Mtni
(ω)−Mtni−1

(ω)
∣∣∣→n 0
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for all ω ∈ Ω by the uniform continuity of the paths of M on compact
intervals and

sup
i=1,...,n

|Mtni
−Mtni−1

| ≤ 2 sup
u∈[0,t]

|Mu| ∈ L2

by Doob’s maximal inequality, majorized convergence implies that

lim
n

E sup
i=1,...,n

∣∣∣Mtni
−Mtni−1

∣∣∣ = 0 so that EM2
t = 0.

(b) Now let N ∈ {1, 2, ...}, T > 0, and

τN(ω) := inf {t ≥ 0 : var(M·(ω), t) > N} ∧ T.

Because of Lemma 3.2.2 the random time τN is a stopping time. To check
this it is sufficient to show that

σN(ω) := inf {t ≥ 0 : var(M·(ω), t) > N}

is a stopping time. Indeed

{t ≤ σN(ω)} = {var(M·(ω), t) ≤ N} ∈ Ft
yields that σN is an optional time, so that we conclude that σN is a stopping
time by the usual conditions. Moreover,

(Mt∧τN )t≥0 ∈M
c,0
2

by stopping and
var(M τN

· (ω), t) ≤ N.

By stopping we mean here that

E(Mt∧ρ|Fs) = Ms∧ρ a.s. (3.3)

for a stopping time 0 ≤ ρ ≤ T . This can be proved by considering ap-
proximating stopping times T ≥ ρl ↓ ρ where the ρl takes only values in
{0, T/2l, ..., kT/2l, ..., T, s}. Stopping from discrete time martingales implies

E(Mt∧ρl |Fs) = Ms∧ρl a.s.

Letting l → ∞, using the pathwise continuity of M , and that (by Doob’s
maximal inequality) E supt∈[0,T ] M

2
t < ∞, we arrive at (3.3). After all, ap-

plying (a) gives
EM2

σN∧T = 0.

Now our assumption implies σN → ∞ a.s. Using again E|M∗
T |2 < ∞ we

derive E|MT | = E limN→∞ |MτN∧T | = limN→∞ E|MτN∧T | = 0.
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Now we derive

Lemma 3.2.5. If M = (Mt)t≥0 ∈Mc,0
loc is of bounded variation, then

P (ω ∈ Ω : Mt(ω) = 0, t ≥ 0) = 1.

Proof. We assume a localizing sequence (σn)∞n=0 for M . In addition, we let

ρn := inf {t ≥ 0 : |Mt| ≥ n}

so that τn := σn∧ρn is a localizing sequence with |M τn
t | ≤ n (again, stopping

is used here). The variation of M τn is bounded by the variation of M , so
that

P(Mt∧τn = 0) = 1

for all t ≥ 0 and n = 0, 1, 2, ... by Lemma 3.2.4. Consequently,

P(Mt = 0) = E
(

lim
n→∞

χ{Mt∧τn=0}

)
= lim

n→∞
E
(
χ{Mt∧τn=0}

)
= 1

where we have used dominated convergence and limn τn(ω) =∞ for all ω ∈
Ω.

Definition 3.2.6. A continuous and adapted process X = (Xt)t≥0, Xt : Ω→
R, is called Itô-process provided there exist L ∈ Lloc

2 and a progressively
measurable process a = (at)t≥0 with∫ t

0

|au(ω)|du <∞

for all t ≥ 0 and ω ∈ Ω, and x0 ∈ R such that

Xt(ω) = x0 +

(∫ t

0

LudBu

)
(ω) +

∫ t

0

au(ω)du for t ≥ 0, a.s.

Proposition 3.2.7. Assume that X = (Xt)t≥0 is an Itô-process with repre-
sentations (L, a) and (L′, a′). Then

(λ× P)
(
(t, ω) ∈ [0,∞)× Ω : Lt(ω) 6= L′t(ω) or at(ω) 6= a′t(ω)

)
= 0.
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Proof. We only prove the part concerning the processes L and L′. From our
assumption and the linearity of the stochastic integral it follows that

Mt :=

∫ t

0

(Lu − L′u)dBu =

∫ t

0

(a′u − au)du for t ≥ 0 a.s.

Hence M = (Mt)t≥0 is a local martingale of bounded variation because, a.s.,

var(M·(ω), t) = sup
tk

{
n∑
k=1

∣∣Mtk(ω)−Mtk−1
(ω)
∣∣}

= sup
tk

{
n∑
k=1

∣∣∣∣∣
∫ tk

tk−1

(a′u(ω)− au(ω))du

∣∣∣∣∣
}

≤ sup
tk

{
n∑
k=1

∫ tk

tk−1

|a′u(ω)− au(ω)|du

}

=

∫ t

0

|a′u(ω)− au(ω)|du

< ∞.

By Lemma 3.2.5 this implies Mt = 0 a.s. so that by the continuity of the
process M one ends up with

Mt = 0 for t ≥ 0, a.s.

and ∫ t

0

(Lu − L′u)dBu = 0 for t ≥ 0, a.s.

Since L − L′ ∈ Lloc
2 we find a sequence of stopping times 0 ≤ τ0 ≤ τ1 ≤ · · ·

converging to infinity such that (L− L′)τn ∈ L2 and by the definition of the
stochastic integral∫ t∧τn

0

(Lu − L′u)χ{u≤τn}dBu =

∫ t∧τn

0

(Lu − L′u)dBu = 0 a.s.

By Proposition 3.1.25(v)∫ t

0

(Lu − L′u)χ{u≤τn}dBu =

∫ t∧τn

0

(Lu − L′u)χ{u≤τn}dBu = 0 a.s.
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and by the Itô isometry,

E
∫ t

0

|Lu − L′u|2χ{u≤τn}du = 0.

Monotone convergence gives

E
∫ ∞

0

|Lu − L′u|2du = 0

which implies our assertion with respect to L and L′.

To formulate Itô’s formula we need

Definition 3.2.8. A continuous function f : [0,∞) × R → R belongs to
C1,2([0,∞) × R) provided that all partial derivatives ∂f/∂t, ∂f/∂x, and
∂2f/∂x2 exist on (0,∞) × R, are continuous, and can be continuously ex-
tended to [0,∞)× R.

Proposition 3.2.9 (Itô’s formula). Let X = (Xt)t≥0 be an Itô-process with
representation

Xt = x0 +

∫ t

0

LudBu +

∫ t

0

audu, t ≥ 0, a.s.

and let f ∈ C1,2([0,∞)× R). Then one has that

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂u
(u,Xu)du+

∫ t

0

∂f

∂x
(u,Xu)LudBu

+

∫ t

0

∂f

∂x
(u,Xu)audu+

1

2

∫ t

0

∂2f

∂x2
(u,Xu)L

2
udu

for t ≥ 0 a.s.

Remark 3.2.10. (i) The assumptions on f and the continuity of the pro-
cess X ensure that the right-hand side of Itô’s formula is well-defined.
In particular, (

∂f

∂x
(u,Xu)Lu

)
u≥0

∈ Lloc
2 .
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(ii) To shorten the notation we shall use∫ t

0

KudXu :=

∫ t

0

KuLudBu +

∫ t

0

Kuaudu

where we fix the decomposition of the process X in the following.

Before we discuss the proof of Itô’s formula we consider some examples
for its application.

Example 3.2.11 (Compensator). For f(t, x) = f(x) := x2 we obtain

X2
t = x2

0 + 2

∫ t

0

XudXu +

∫ t

0

L2
udu, t ≥ 0, a.s.

If au ≡ 0, then we get that

X2
t −

∫ t

0

L2
udu = x2

0 + 2

∫ t

0

XuLudBu t ≥ 0, a.s.

is a local martingale. Sometimes the term
∫ t

0
L2
udu is called compensator (it

compensates X2
t to get a local martingale) and denoted by 〈X〉t :=

∫ t
0
L2
udu.

Example 3.2.12 (Exponential martingale). Let L ∈ C[0,∞) and Xt :=∫ t
0
LudBu. Then

E(X)t := eXt−
1
2

∫ t
0 L

2
udu = eXt−

1
2
〈X〉t

is a martingale and called exponential martingale. To check this, we let

f(t, x) := ex−
1
2

∫ t
0 L

2
udu.

Applying Itô’s formula gives, a.s.,

E(X)t = f(t,Xt)

= f(0, X0) +

∫ t

0

∂f

∂u
(u,Xu)du+

∫ t

0

∂f

∂x
(u,Xu)LudBu

+

∫ t

0

∂f

∂x
(u,Xu)audu+

1

2

∫ t

0

∂2f

∂x2
(u,Xu)L

2
udu
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= f(0, X0) +

∫ t

0

f(u,Xu)

(
−1

2

)
L2
udu+

∫ t

0

f(u,Xu)LudBu

+

∫ t

0

f(u,Xu)audu+
1

2

∫ t

0

f(u,Xu)L
2
udu

= 1 +

∫ t

0

f(u,Xu)LudBu

with ∫ t

0

E|f(u,Xu)Lu|2du =

∫ t

0

Ee2(Xu− 1
2

∫ u
0 L2

vdv)L2
udu

≤

[
sup
u∈[0,t]

L2
u

]∫ t

0

Ee2Xudu.

So we have to compute Ee2Xu . This is easy to verify since Xu is a centered
Gaussian random variable with variance c(u) =

∫ u
0
L2
vdv and

Ee2Xu = Ee2
√
cug = e2cu ,

where g ∼ N(0, 1). This implies∫ t

0

E|f(u,Xu)Lu|2du <∞

and that (E(X)t − 1)t≥0 ∈ Mc,0
2 . The above integral equation can also be

written as a differential equation

df(t,Xt) = f(t,Xt)LtdBt with f(0, X0) = 1

or
dE(X)t = E(X)tdXt with E(X)0 = 1.

Example 3.2.13 (Partial integration). For ψ ∈ C1[0,∞) one has

ψ(t)Xt = ψ(0)X0 +

∫ t

0

ψ(u)dXu +

∫ t

0

Xuψ
′(u)du a.s.

which follows by using f(t, x) := ψ(t)x.
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Example 3.2.14. Using Itô’s formula we can now establish an important
connection between stochastic differential equations and partial differential
equations by one example. Assume the following parabolic PDE

∂G

∂t
+
y2

2

∂2G

∂y2
= 0 (3.4)

for (t, y) ∈ [0, T )×(0,∞) with the formal boundary condition G(T, y) = g(y)
for some fixed T > 0. The PDE is called backwards equation since the
boundary condition is a condition about the final time point T . Assume now
the geometric Brownian motion

St(ω) := eBt(ω)− t
2 for t ≥ 0.

Applying Itô’s formula we see that S is an Itô-process with

St = 1 +

∫ t

0

SudBu.

What is the connection between the geometric Brownian motion and the
PDE (3.4). Assume that Eg(ST )2 <∞ and define

G(t, y) := Eg(yST−t).

One can show that there is some ε > 0 such that G ∈ C∞((−ε, T )× (0,∞))
and that f satisfies the PDE (3.4). The principal way (without details) is as
follows:

Fact 3.2.15. Let p(t, x, y) := 1√
2πt
e−

(x−y)2

2t for t > 0 and x, y ∈ R. Then

∂p

∂t
− 1

2

∂2p

∂x2
= 0.

Moreover, letting h : R→ R be a Borel function such that∫
R
e−ax

2 |h(x)|dx <∞,

then for

u(t, x) :=

∫
R
h(y)p(t, x, y)dy

one has that
∂u

∂t
− 1

2

∂2u

∂x2
= 0

for 0 < t < 1
2a

and x ∈ R.
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Let now f(x) := g(exp(x − (T/2)). Applying the above fact we get an
ε > 0 (without proof) such that for

F (t, x) := Ef(x+BT−t)

one has
F

∂t
+

1

2

∂2F

∂x2
= 0

for (t, x) ∈ (−ε, T )× R. Using

G(t, y) = Eg(yST−t) = Ef
(
BT−t +

t

2
+ log y

)
= F

(
t,
t

2
+ log y

)
we can derive that G satisfies the PDE (3.4). Applying Itô’s formula gives
that

G(t, St) = G(0, S0) +

∫ t

0

∂G

∂y
(u, Su)SudBu

+

∫ t

0

∂G

∂u
(u, Su)du+

1

2

∫ t

0

∂2G

∂y2
(u, Su)S

2
udu

= G(0, S0) +

∫ t

0

∂G

∂y
(u, Su)SudBu

for t ∈ (0, T ) a.s. Without proof, we remark that

g(ST ) = G(0, S0) +

∫ T

0

∂G

∂y
(u, Su)SudBu a.s.

by t ↑ T where the integrand of the stochastic integral is defined to be zero
for u = T and one has that∫ T

0

E
∣∣∣∣∂G∂y (u, Su)Su

∣∣∣∣2 du <∞.
Example 3.2.16 (Computation of moments). ([5], [6]) The following ex-
ample is of importance in Stochastic Finance when the Brownian motion is
replaced by the geometric Brownian motion. For simplicity we use the Brow-
nian motion. Let f : R→ R be a Borel function such that Ef(BT )2 <∞ for
some T > 0. Similarly to Example 3.2.14 we can define

F (t, x) := Ef(x+WT−t)
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and get, for some ε > 0, a function F ∈ C∞((−ε, T ) × R) which solves the
PDE

∂F

∂t
+

1

2

∂2F

∂x2
= 0.

Again, by Itô’s formula

f(ST ) = F (0, S0) +

∫ T

0

∂F

∂x
(u,Bu)dBu a.s.

where ∫ T

0

E
∣∣∣∣∂F∂x (u,Bu)

∣∣∣∣2 du <∞.
We are interested in

E
∣∣∣∣∫ b

a

[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]
dBu

∣∣∣∣2
for 0 ≤ a < b < T , which can be interpreted as the quadratic one-step error
if
∫ b
a
∂F
∂x

(u,Bu)dBu is approximated by ∂F
∂x

(a,Ba)(Bb −Ba). To compute the
error we proceed formally as follows: by the Itô-isometry we have

E
∣∣∣∣∫ b

a

[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]
dBu

∣∣∣∣2
=

∫ b

a

E
[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]2

du.

Now we rewrite the expression under the integral by Itô’s formula. We let

A =
∂

∂t
+

1

2

∂2

∂x2

and get by Ito’s formula that

E
[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]2

= E
[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]2

|u=a

+E
∫ v

a

∂

∂x

[
∂F

∂x
(v,Bv)−

∂F

∂x
(a,Ba)

]2

dBv
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+E
∫ u

a

A
[
∂F

∂x
(v,Bv)−

∂F

∂x
(a,Ba)

]2

dv

= E
∫ u

a

A
[
∂F

∂x
(v,Bv)−

∂F

∂x
(a,Ba)

]2

dv

= E
∫ u

a

[
∂2F

∂x2
(v,Bv)

]2

dv

since

1

2
A(v,x)

[
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

]2

=

[
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

]
∂2F

∂x∂t
(v, x)

+
1

2

∂

∂x

([
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

]
∂2F

∂x2
(v,Bv)

)
=

[
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

]
∂2F

∂x∂t
(v, x)

+
1

2

∂2F

∂x2
(v, x)

∂2F

∂x2
(v,Bv) +

1

2

[
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

]
∂3F

∂x3
(v,Bv)

=

[
∂F

∂x
(v, x)− ∂F

∂x
(a, y)

](
∂2F

∂x∂t
(v, x) +

1

2

∂3F

∂x3
(v,Bv)

)
+

1

2

(
∂2F

∂x2
(v, x)

∂2F

∂x2
(v,Bv)

)
=

1

2

(
∂2F

∂x2
(v, x)

)2

.

Summarizing the computations gives

E
[
∂F

∂x
(u,Bu)−

∂F

∂x
(a,Ba)

]2

= E
∫ b

a

∫ u

a

E
(
∂2F

∂x2
(v, x)

)2

dvdu

= E
∫ b

a

(b− u)E
(
∂2F

∂x2
(u,Bu)

)2

du.

Now take a net 0 = t0 < t1 < · · · < tn = T one can show that

E

∣∣∣∣∣
∫ T

0

∂F

∂x
(u,Bu)dBu −

n∑
k=1

∂F

∂x
(tk−1, Btk−1

)(Btk −Btk−1
)

∣∣∣∣∣
2
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=
n∑
k=1

∫ tk

tk−1

(tk − u)E
(
∂2F

∂x2
(u,Bu)

)2

du.

Taking for example ψ(x) := χ[K,∞)(x) one can compute that

E
(
∂2F

∂x2
(u,Bu)

)2

∼ 1

(T − u)
3
2

.

3.3 Proof of Itô’s formula in a simple case

Throughout this section we assume X to be an Itô process such that L ∈ L2.
Before we start to prove Itô’s formula we need the following lemmata:

Lemma 3.3.1. Let Yn → 0 a.s. and Zn → Z in probability. Then

YnZn →P 0.

The lemma will be an exercise.

Lemma 3.3.2. Let Y = (Yt)t≥0 be continuous and adapted, and assume that

sup
t≥0,ω∈Ω

|Yt(ω)| <∞.

Then, for tni := i
n
t, one has that

n∑
i=1

Ytni−1
(Xtni

−Xtni−1
) →P

∫ t

0

YudXu, (3.5)

n∑
i=1

Ytni−1
(Xtni

−Xtni−1
)2 →P

∫ t

0

YuL
2
udu. (3.6)

The proof of this lemma is indicated at the end of the section.

Proof of Proposition 3.2.9. We shall prove Itô’s formula in the case that f (3)

exists and is continuous, and satisfies

sup
x∈R,k=0,1,2,3

|f (k)(x)| <∞.
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We fix t > 0 and let

tni :=
i

n
t

for i = 0, ..., n be the equidistant time-net on [0, t]. Then, a.s.,

f(Xt)− f(X0)

=
n∑
i=1

[f(Xtni
− f(Xtni−1

)]

=
n∑
i=1

[
f ′(Xtni−1

)(Xtni
−Xtni−1

) +
1

2
f ′′(Xtni−1

)(Xtni
−Xtni−1

)2

+
1

6
f (3)(X̃tni−1

)(Xtni
−Xtni−1

)3

]
=

n∑
i=1

f ′(Xtni−1
)(Xtni

−Xtni−1
) +

n∑
i=1

1

2
f ′′(Xtni−1

)(Xtni
−Xtni−1

)2

+
n∑
i=1

1

6
f (3)(X̃tni−1

)(Xtni
−Xtni−1

)3

=: In1 +
1

2
In2 +

1

6
In3

where we used Taylor’s formula with the Lagrange remainder. Applying
Lemma 3.3.2 we get, in probability, that

lim
n
In1 =

∫ t

0

f ′(Xu)dXu,

lim
n
In2 =

∫ t

0

f ′′(Xu)L
2
udu.

To get
lim
n
In3 =P 0

we observe that∣∣∣∣∣
n∑
i=1

f (3)(X̃tni−1
)(Xtni

−Xtni−1
)3

∣∣∣∣∣
≤

[
sup
x∈R
|f (3)(x)| sup

|u−v|≤t/n
|Xu −Xv|

][
n∑
i=1

(Xtni
−Xtni−1

)2

]
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=: YnZn

with Yn → 0 a.s. and Zn →P
∫ t

0
L2
udu according to Lemma 3.3.2.

Proof of Lemma 3.3.2. (a) First we consider (3.5) and get

n∑
i=1

Ytni−1
(Xtni

−Xtni−1
) =

n∑
i=1

Ytni−1

∫ ti

tni−1

LudBu +
n∑
i=1

Ytni−1

∫ tni

tni−1

audu.

By standard calculus the second term converges for all ω ∈ Ω to∫ t

0

Yu(ω)au(ω)du.

To consider the first term we let

K(n)
u := Ytni−1

Lu for u ∈ (tni−1, t
n
i ]

and otherwise zero. Then

E

∣∣∣∣∣
n∑
i=1

Ytni−1

∫ tni

tni−1

LudBu −
∫ t

0

YuLudBu

∣∣∣∣∣
2

= E

∣∣∣∣∣
n∑
i=1

∫ tni

tni−1

(Ytni−1
Lu)dBu −

∫ t

0

YuLudBu

∣∣∣∣∣
2

= E
∣∣∣∣∫ t

0

(K(n)
u − YuLu)dBu

∣∣∣∣2
= E

∫ t

0

∣∣K(n)
u − YuLu

∣∣2 du
→n 0

by dominated convergence since∣∣K(n)
u − YuLu

∣∣ ≤ [2 sup
t≥0,ω∈Ω

|Yt(ω)|]|Lu|

and limn |K(n)
u − YuLu| = 0 for all ω ∈ Ω.
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(b) Now we consider (3.6) and prove this statement for au ≡ 0 and
|Lu(ω)| ≤ c for all u ≥ 0 and ω ∈ Ω. We get

n∑
i=1

Ytni−1
(Xtni

−Xtni−1
)2 −

∫ t

0

YuL
2
udu

=
n∑
i=1

Ytni−1

[
(Xtni

−Xtni−1
)2 −

∫ tni

tni−1

L2
udu

]
+

n∑
i=1

∫ tni

tni−1

(Ytni−1
− Yu)L2

udu

where the second term converges to zero for all ω ∈ Ω. To treat the first sum
we let

di := (Xtni
−Xtni−1

)2 −
∫ tni

tni−1

L2
udu

and get a martingale difference sequence since

E
(

(Xtni
−Xtni−1

)2|Ftni−1

)
= E

(∫ tni

tni−1

L2
udu|Ftni−1

)
a.s.

Consequently,

E

∣∣∣∣∣
n∑
i=1

Ytni−1

[
(Xtni

−Xtni−1
)2 −

∫ tni

tni−1

L2
udu

]∣∣∣∣∣
2

=
n∑
i=1

EY 2
tni−1

d2
i ≤ sup

ω,u
Yu(ω)2

n∑
i=1

Ed2
i .

Finally,

Ed2
i = E(Xtni

−Xtni−1
)4 − 2E(Xtni

−Xtni−1
)2

∫ tni

tni−1

L2
udu+ E

(∫ tni

tni−1

L2
udu

)2

where ∫ tni

tni−1

L2
udu ≤ c2 t

n
.

Since
n∑
i=1

E
(
Xtni
−Xtni−1

)2

= E
∫ t

0

L2
udu <∞
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it remains to show that
n∑
i=1

E
(
Xtni
−Xtni−1

)4

→n 0.

But this follows from the Burkholder-Davis-Gundy inequality

E|Xtni
−Xtni−1

|4 ≤ c4E

(∫ tni

tni−1

L2
udu

) 4
2

≤ c4

(
t

n

)2

c4.

3.4 For extended reading

Definition 3.4.1. A continuous adapted stochastic process X = (Xt)t≥0 is
called continuous semi-martingale provided that

Xt = x0 +Mt + At

where x0 ∈ R, M ∈Mc,0
loc, and A is of bounded variation with A0 ≡ 0.

Because of Lemma 3.2.5 the decomposition is unique.

Proposition 3.4.2 (Itô’s formula for continuous semimartin-
gales). Let f ∈ C2(Rd) and Xt = (X1

t , ..., X
d
t ) be a vector of continuous

semi-martingales. Then one has that, a.s.,

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xu)dX

i
u +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xu)d〈M i,M j〉u

where dX i
u = dM i

u + dAiu and

〈M i,M j〉u :=
1

4

[
〈M i +M j〉u − 〈M i −M j〉u

]
.

3.4.1 Local time

Given a Borel set A ⊆ R and a Brownian motion B = (Bt)t≥0 we want to
compute the occupation time of B in A until time t, i.e.

Γt(A, ω) :=

∫ t

0

χA(Bs(ω))ds = λ(s ∈ [0, t] : Bs(ω) ∈ A).
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It is not difficult to show that Γt(A, ω) = 0 P-a.s. if λ(A) = 0 so that one
can ask for a density

Γt(A, ω) =

∫
A

2Lt(x, ω)dx

where the factor 2 is for cosmetics reason.

Definition 3.4.3. A stochastic process L = (Lt(x, ·))t≥0,x∈R is called Brow-
nian local time provided that

(i) Lt(x, ·) : Ω→ R is Ft-measurable,

(ii) there exists Ω0 ∈ F of measure one such that for all ω ∈ Ω0 one has

(a) (t, x)→ Lt(x, ω) is continuous,

(b) Γt(A, ω) =
∫
A

2Lt(x, ω)dx for all Borel sets A ⊆ R.

To get a candidate for Lt(x, ·) we use Itô’s formula: Let ϕε ∈ C∞0 be such
that supp(ϕε) ⊆ [−ε, ε], ϕε ≥ 0, and

∫
R ϕε(x)dx = 1. Let

fε(x) :=

∫ x

−∞

∫ y

−∞
ϕε(u)dudy

so that

f ′ε(x) =

∫ x

−∞
ϕε(u)du,

f ′′ε (x) = ϕε(x).

By Itô’s formula, a.s.

fε(Bt − a) = fε(−a) +

∫ t

0

f ′ε(Bs − a)dBs +
1

2

∫ t

0

f ′′ε (Bs − a)ds

= fε(−a) +

∫ t

0

f ′ε(Bs − a)dBs +
1

2

∫ t

0

ϕε(Bs − a)ds.

Now

E
∫ t

0

|f ′ε(Bs − a)− χ(0,∞)(Bs − a)|2ds→ 0

and
sup
x
|fε(x)− x+| → 0
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as ε ↓ 0, so that, a.s.,

lim
εn↓0

1

2

∫ t

0

ϕεn(Bs − a)ds = (Bt − a)+ − (−a)+ −
∫ t

0

χ(a,∞)(Bs)dBs

for some sequence εn ↓ 0. But the left-hand side is - formally -

1

2

∫ t

0

δ(Bs − a)ds = Lt(a, ·).

Proposition 3.4.4 (Trotter). The Brownian local time exists.

Proof. (Idea) (a) Let

Mt(a, ω) := (Bt(ω)− a)+ − (−a)+ −
(∫ t

0

χ(a,∞)(Bs)dBs

)
(ω).

By a version of Kolmogorov’s Proposition 2.3.13 one can show that there
exists a continuous (in (t, x)) version L = (Lt(x, ·))t≥0,x∈R of M .

(b) Let −∞ < a1 < a2 < b2 < b1 and define the continuous function
h : R→ R as h(x) = 1 on [a2, b2], zero outside [a1, b1], and linear otherwise.
Let

H(x) :=

∫ x

−∞

∫ y

−∞
h(u)dudy =

∫
R
(x− u)+du

so that

H ′(x) =

∫ x

−∞
h(u)du =

∫
R
h(u)χ(u,∞)(x)du

H ′′(x) = h(x).

By Itô’s formula,

1

2

∫ t

0

h(Bs)ds = H(Bt)−H(B0)−
∫ t

0

H ′(Bs)dBs

=

∫
R

[
(Bt − u)+ − (−u)+ −

∫ t

0

χ(u,∞)(Bs)dBs

]
du

=

∫
R
Mt(u, ·)du.

(c) In the last step one has to replace M by L.
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Formally, we also get the following:

Γ((a− ε, a+ ε), ω) =

∫ a+ε

a−ε
2Lt(x, ω)dx

and

lim
ε↓0

1

4ε
Γ((a− ε, a+ ε), ω) = Lt(a, ω).

Proposition 3.4.5 (Tanaka formulas). One has that, a.s.,

Lt(a) = (Bt − a)+ − (−a)+ −
∫ t

0

χ(a,∞)(Bs)dBs

and

2Lt(a) = |Bt − a| − | − a| −
∫ t

0

sgn(Bs − a)dBs,

where sgn(x) = −1 for x < 0 and sgn(x) = 1 for x ≥ 0

Proposition 3.4.6 (Itô’s formula for convex functions). For a convex func-
tion f and its second derivative µ one has, a.s.,

f(Bt) = f(0) +

∫ t

0

D−f(Bs)dBs +

∫
R
Lt(x)dµ(x)

where

D−f(x) := lim
h↓0

1

h
[f(x− h)− f(x)]

and µ is determined by

µ([a, b)) := D−f(b)−D−f(a).

3.4.2 Three-dimensional Brownian motion is transient

We would like to prove, that the three-dimensional Brownian motion is tran-
sient2. For this we let B = (B1

t , ..., B
d
t ) a d-dimensional standard Brownian

motion where the filtration is taken to be the augmentation of the natural
filtration and the usual conditions are satisfied. The process

Rt := |x0 +B|

where |·| is the d-dimensional euclidean norm is called d-dimensional Bessel
process starting in x0 ∈ Rd. We want to prove the following

2Transient: passing especially quickly into and out of existence.
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Proposition 3.4.7. Let d = 3 and 0 < c < r = |x0|. Then one has that

P
(

inf
t≥0

Rt ≤ c

)
=
c

r
.

Proof. Let

τ := inf {t ≥ 0 : Rt = c} and σk := inf {t ≥ 0 : Rt = k}

for an integer k > r. Let

ρk,n := τ ∧ σk ∧ n.

By Itô’s formula we get

1

Rρk,n

=
1

r
−
∫ ρk,n

0

〈∇f, dB〉u

with f(x) := 1/|x|. Taking the expected value gives

1

r
= E

1

Rρk,n

=
1

c
P(τ ≤ σk ∧ n) +

1

k
P(σk ≤ τ ∧ n) + E

1

Rn

χ{n<σk∧τ}.

By n→∞ we get that

1

r
=

1

c
P(τ ≤ σk) +

1

k
P(σk ≤ τ).

By k →∞ we end up with

1

r
=

1

c
P(τ <∞).
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Now we can prove:

Proposition 3.4.8. Let d = 3 and let R = (Rt)t≥0 be a 3-dimensional Bessel
process starting at x0 with |x0| > 0. Then one has that

P( lim
t→∞
|Rt| =∞) = 1.

Proof. (a) Let R = (Rr
t )t≥0 be a 3-dimensional Bessel process starting at R0

with |R0| = r > 0. For c = r/2 we get by Proposition 3.4.7 that

P
(

inf
t≥0

Rr
t ≤

r

2

)
=

1

2
.

By iteration we get

P
(

inf
t≥0

Rr
t ≤

r

2k

)
=

1

2k
for k = 1, 2, . . .

(b) Given ε ∈ (0, 1) and L > 0, we find k with 1/2k < ε and r such that
r/2k = L. If the Brownian motion would start at level r, then

P
(

inf
t≥0

Rr
t ≤ L

)
= 1/2k < ε.

Let σ := inf{t ≥ 0 : |Bt| = r}, so that we get P(σ <∞) = 1. Hence for our
process Rt starting in x0, we get

P
(

lim inf
t→∞

Rt ≤ L
)
< ε for all ε ∈ (0, 1) and L > 0.

Hence P (lim inft→∞Rt ≤ L) = 0 for all L > 0 and

P
(

lim inf
t→∞

Rt =∞
)

= 1.
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Chapter 4

Stochastic differential equations

Stochastic differential equations (SDE’s) play an important role in stochastic
modeling. For example, in Economics solutions of the SDE’s considered be-
low are used to model share prices. In Biology solutions of stochastic partial
differential equations (not considered here) describe sizes of populations.

4.1 What is a stochastic differential equa-

tion?

Stochastic differential equations are (for us) a formal abbreviation of integral
equations as described now. For the rest of this chapter we fix a stochastic
basis (Ω,F ,P; (Ft)t≥0) which satisfies the usual assumptions and an (Ft)t≥0-
Brownian motion B = (Bt)t≥0.

Definition 4.1.1. Let x0 ∈ R, D ⊆ R be an open set, and σ, a : [0,∞)×D →
R be continuous. A path-wise continuous and adapted stochastic process
X = (Xt)t≥0 is a solution of the stochastic differential equation (SDE)

dXt = σ(t,Xt)dBt + a(t,Xt)dt with X0 = x0 (4.1)

provided that the following conditions are satisfied:

(i) Xt(ω) ∈ D for all t ≥ 0 and ω ∈ Ω.

(ii) X0 ≡ x0.

(iii) Xt = x0 +
∫ t

0
σ(u,Xu)dBu +

∫ t
0
a(u,Xu)du for t ≥ 0 a.s.

87
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It follows from the continuity of X and (σ, b), and definition of the solu-
tion, that∫ t

0

|a(u,Xu(ω))|du+

∫ t

0

|σ(u,Xu(ω))|2du <∞ for all ω ∈ Ω

and that (in particular) (σ(u,Xu))u≥0 ∈ Lloc
2 .

Let us give some examples of SDE’s.

Example 4.1.2 (Brownian motion). A solution of

dXt = dBt and X0 = 0

is the Brownian motion itself B = (Bt)t≥0 since Bt =
∫ t

0
1dBu. We can take

D = R.

Example 4.1.3 (Geometric Brownian motion with drift). Letting Xt :=
x0e

cBt+bt with x0, b, c ∈ R we obtain by Itô’s formula that, a.s.,

Xt = x0 +

∫ t

0

cXudBu +

∫ t

0

bXudu+
1

2

∫ t

0

c2Xudu

= x0 +

∫ t

0

cXudBu +

∫ t

0

[
b+

1

2
c2

]
Xudu

= x0 +

∫ t

0

σXudBu +

∫ t

0

aXudu

with

σ := c,

a := b+
1

2
c2.

Going the other way round by starting with a and σ, we get that

c = σ,

b = a− 1

2
σ2.

Consequently, the SDE

dXt = σXtdBt + aXtdt with X0 = x0

is solved by

Xt = x0e
σBt+(a− 1

2
σ2)t.

We may use D = R for σ(t, x) := σx and a(t, x) := ax.
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The following examples only provide the formal SDE’s. We do not discuss
solvability at this point.

Example 4.1.4 (Ornstein-Uhlenbeck process). Here one considers the SDE

dXt = −cXtdt+ σdBt with X0 = x0.

We close by some examples from Stochastic Finance.

Example 4.1.5 (Vasicek interest rate model). Here one considers that

drt = [a− brt]dt+ σdBt with r0 ≥ 0,

σ ≥ 0, and a, b > 0 models an interest rate in Stochastic Finance. The
problem with this model is that rt might be negative if σ > 0. If σ = 0, then
one gets as one solution

rt = r0e
−bt +

a

b
(1− e−bt)

so that the meaning of a and b become more clear: the interest rate moves
from its initial value r0 to the value a

b
as t→∞ with a speed determined by

the parameter a. If σ > 0 one tries to add a random perturbation to that.

Both, the Ornstein-Uhlenbeck process and the process in the Vasicek
interest rate model are Gaussian processes since the diffusion coefficient is not
random. Moreover, the Vasicek interest rate model process is a generalization
of the Ornstein-Uhlenbeck process.

The drawback of a negative interest rate in the Vasicek model can be
removed by the following model:

Example 4.1.6 (Cox-Ingersoll-Ross Model). For a, b > 0 and σ ≥ 0 one
proposes the SDE

drt = [a− brt]dt+ σ
√
rtdBt with r0 > 0.

The difference to the Vasicek interest rate model is that the factor
√
rt is

added in the diffusion part. This guarantees that the fluctuation is getting
smaller if rt is close to zero. In fact, the parameters can be adjusted that the
trajectories stay positive (which should be surprising).
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Instead of considering the interest rate r0 as initial condition one can take
into the account the whole interest curve as anticipated by the market at time
t = 0 as initial condition. This yields to a considerably more complicated
model, the Heath-Jarrow-Morton model.

Example 4.1.7 (Heath-Jarrow-Morton model). We assume that f(s, t)
stands for the instantaneous interest rate at time t as anticipated by the
market at time s with 0 ≤ s ≤ t < ∞. In particular, rt = f(t, t) is the
interest rate at time t. Now one considers the equation

f(t, u) = f(0, u) +

∫ t

0

α(v, u)dv +

∫ t

0

σ(f(v, u))dBv

with f(0, u) = Φ(u).

4.2 Strong Uniqueness of SDE’s

We shall start with a beautiful lemma, the Gronwall lemma.

Lemma 4.2.1 (Gronwall). Let A,B, T ≥ 0 and f : [0, T ] → [0,∞) be a
continuous function such that

f(t) ≤ A+B

∫ t

0

f(s)ds

for all t ∈ [0, T ]. Then one has that f(T ) ≤ AeBT .

Proof. Letting g(t) := e−Bt
∫ t

0
f(s)ds we deduce

g′(t) = −Be−Bt
∫ t

0

f(s)ds+ e−Btf(t)

= e−Bt
(
f(t)−B

∫ t

0

f(s)ds

)
≤ Ae−Bt

and

g(T ) =

∫ T

0

g′(t)dt ≤ A

∫ T

0

e−Btdt =
A

B

(
1− e−BT

)
.
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Consequently,

f(T ) ≤ A+B

∫ T

0

f(t)dt = A+BeBTg(T )

≤ A+BeBT
A

B

(
1− e−BT

)
= AeBT .

Proposition 4.2.2 (Strong uniqueness). Suppose that for all n = 1, 2, ...
there is a constant cn > 0 such that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ cn|x− y|

for |x| ≤ n, |y| ≤ n, and t ≥ 0. Assume that (Xt)t≥0 and (Yt)t≥0 are solutions
of the SDE (4.1). Then

P (Xt = Yt, t ≥ 0) = 1.

Proof. We use the stopping times

σn := inf {t ≥ 0 : |Xt| ≥ n} and τn := inf {t ≥ 0 : |Yt| ≥ n}

where we assume that n > |x0|. Letting ρn := min {σn, τn} we obtain, a.s.,
that

Xt∧ρn − Yt∧ρn

=

∫ t∧ρn

0

[a(u,Xu)− a(u, Yu)] du+

∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)] dBu.

Hence

E |Xt∧ρn − Yt∧ρn|
2 ≤ 2E

∣∣∣∣∫ t∧ρn

0

[a(u,Xu)− a(u, Yu)] du

∣∣∣∣2
+2E

∣∣∣∣∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)] dBu

∣∣∣∣2
≤ 2tE

∫ t∧ρn

0

|a(u,Xu)− a(u, Yu)|2 du



92 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS

+2E
∫ t∧ρn

0

[σ(u,Xu)− σ(u, Yu)]
2 du

≤ (2t+ 2)c2
nE
∫ t∧ρn

0

|Xu − Yu|2du

≤ (2t+ 2)c2
nE
∫ t

0

|Xu∧ρn − Yu∧ρn|2du.

Now fix T > 0. The above computation gives

E |Xt∧ρn − Yt∧ρn|
2 ≤ (2T + 2)c2

n

∫ t

0

E |Xu∧ρn − Yu∧ρn|
2 du

for t ∈ [0, T ]. For
f(t) := E |Xt∧ρn − Yt∧ρn|

2

we may apply Gronwall’s lemma. The function f is continuous since for
tk → t one gets

lim
k
f(tk) = lim

k
E |Xtk∧ρn − Ytk∧ρn|

2

= E lim
k
|Xtk∧ρn − Ytk∧ρn|

2

= E |Xt∧ρn − Yt∧ρn|
2

= f(t)

by dominated convergence as a consequence of (for example)

E sup
t∈[0,T ]

|Xt∧ρn|
2 ≤ n2

and the continuity of the processes X and Y . Exploiting Gronwall’s lemma
with A := 0 and B := (2T + 2)c2

n yields

f(T ) ≤ AeBT = 0 and E |Xt∧ρn − Yt∧ρn|
2 = 0.

Since
lim
n
ρn =∞

because X and Y are continuous processes, we get by Fatou’s lemma that

E |Xt − Yt|2 = E lim inf
n
|Xt∧ρn − Yt∧ρn|

2 ≤ lim inf
n

E |Xt∧ρn − Yt∧ρn |
2 = 0.
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Hence P(Xt = Yt) = 1 and, by the continuity of X and Y ,

P(Xt = Yt, t ≥ 0) = 1.

Sometimes the assumptions of the above criteria are too strong. There is
a nice extension:

Proposition 4.2.3 (Yamada-Tanaka). Suppose that

σ, a : [0,∞)× R→ R

are continuous such that

|σ(t, x)− σ(t, y)| ≤ h(|x− y|),
|a(t, x)− a(t, y)| ≤ K(|x− y|)

for x, y ∈ R, where h : [0,∞) → [0,∞) is strictly increasing with h(0) = 0
and K : [0,∞) → R is strictly increasing and concave with K(0) = 0, such
that ∫ ε

0

du

K(u)
=

∫ ε

0

du

h(u)2
=∞

for all ε > 0. Then any two solutions of (4.1) are indistinguishable.

Example 4.2.4. One can take h(x) := xα for α ≥ 1
2
.

For α = 1/2 we have in the Cox-Ingersoll-Ross model that σ(t, x) =
σ
√
|x|. This implies that

|σ(t, x)− σ(t, y)| ≤ σ|
√
x−√y| ≤ σ

√
|x− y|.

However, there is also the following example:

Example 4.2.5. Let σ : R→ [0,∞) be continuous such that

(i) σ(x0) = 0,

(ii)
∫ x0+ε

x0−ε
dx

σ2(x)
<∞ and σ(x) ≥ 1 if |x− x0| > ε for some ε > 0.

Then the SDE
dXt = σ(Xt)dBt with X0 = x0

has infinitely many solutions.
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4.3 Existence of strong solutions of SDE’s

First we recall the Burkholder-Davis-Gundy inequalities:

Proposition 4.3.1 (Burkholder-Davis-Gundy inequalities). For any 0 <
p <∞ there exist constants αp, βp > 0 such that, for L ∈ Lloc

2 , one has that

βp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
s∈[0,T ]

∣∣∣∣∫ t

0

LsdBs

∣∣∣∣
∥∥∥∥∥
p

≤ αp

∥∥∥∥∥∥
√∫ T

0

L2
tdt

∥∥∥∥∥∥
p

. (4.2)

Moreover, one has αp ≤ c
√
p for p ∈ [2,∞) for some absolute constant c > 0.

The result we want to prove in this section is

Proposition 4.3.2. Suppose that σ, a : [0,∞)×R→ R are continuous such
that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ K|x− y|

for all x, y ∈ R and some K > 0. Then there exists a solution X = (Xt)t≥0

to the SDE (4.1). Moreover, for 2 ≤ p <∞ we have∥∥∥∥∥ sup
t∈[0,T ]

|Xt|

∥∥∥∥∥
p

≤
√

2[|x0|+ 1]eK
2
TT [αp+

√
T ]2

for T > 0, αp > 0 being the constant from the Burkholder-Davis-Gundy
inequalities, and KT := max{K, supt∈[0,T ][|σ(t, 0)|+ |a(t, 0)|]}.

Proof. (a) Let p ≥ 2 and T > 0. We define the space L
C[0,T ]
p (Ω,F ,P) to be

the linear space of all f : Ω → C[0, T ] such that ft : Ω → R is measurable
for all t ∈ [0, T ] and such that

‖f‖
L
C[0,T ]
p

:=

(∫
Ω

||f(ω)||pC[0,T ]dP(ω)

)1/p

<∞

with ‖g‖C[0,T ] := supt∈[0,T ] |gt| for g ∈ C[0, T ]. We obtain a complete normed

space, i.e. a Banach space. We define the sequence of processes X(k) =
(X

(k)
t )t≥0 by

X
(0)
t :≡ x0,
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X
(k+1)
t := x0 +

∫ t

0

σ(u,X(k)
u )dBu +

∫ t

0

a(u,X(k)
u )du, k ≥ 0.

(b) X(k) ∈ L
C[0,T ]
p (Ω,F ,P) for all k ∈ N: We check this by induction,

where for and X
(0)
t = x0 this is evident. So we assume X(0), . . . , X(k) ∈

L
C[0,T ]
p (Ω,F ,P) and decompose

X
(k+1)
t −X(k)

t =

∫ t

0

[
σ(u,X(k)

u )− σ(u,X(k−1)
u )

]
dBu

+

∫ t

0

[
a(u,X(k)

u )− a(u,X(k−1)
u )

]
du

=: Mt + Ct.

Now

E sup
t∈[0,T ]

|Ct|p ≤ T p−1Kp

∫ T

0

E
∣∣X(k)

u −X(k−1)
u

∣∣p du
by Hölder’s inequality and

E sup
t∈[0,T ]

|Mt|p ≤ αppE
∣∣∣∣∫ T

0

∣∣σ(u,X(k)
u )− σ(u,X(k−1)

u )
∣∣2 du∣∣∣∣p/2

≤ αppK
pT

p−2
2

∫ T

0

E
∣∣X(k)

u −X(k−1)
u

∣∣p du
by the Burkholder-Davis-Gundy inequality with constant αp > 0 and
Hölder’s inequality. Consequently,(
E sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣p)1/p

≤

(
E sup
t∈[0,T ]

|Mt|p
)1/p

+

(
E sup
t∈[0,T ]

|Ct|p
)1/p

≤ Lp

(∫ T

0

E
∣∣X(k)

u −X(k−1)
u

∣∣p du)1/p

with Lp := K[T
p−1
p + αpT

p−2
2p ] where we used the triangle-inequality in

L
C[0,T ]
p (Ω,F ,P). Because of the triangle-inequality,

||X(k+1)||
L
C[0,T ]
p

≤ ||X(k+1) −X(k)||
L
C[0,T ]
p

+ ||X(k)||
L
C[0,T ]
p

this implies X(k+1) ∈ LC[0,T ]
p (Ω,F ,P).
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(c) Iterating step (b) yields to(
E sup
t∈[0,T ]

∣∣∣X(k+1)
t −X(k)

t

∣∣∣p) ≤ (TLpp)
k

k!
sup
t∈[0,T ]

E
∣∣∣X(1)

t − x0

∣∣∣p =:
(TLpp)

k

k!
cpx0,T,p

.

Therefore, (X(k))∞k=1 is a Cauchy-sequence in L
C[0,T ]
p (Ω,F ,P) as for 0 ≤ k <

l <∞ we have∥∥X(l) −X(k)
∥∥
L
C[0,T ]
p

≤
∥∥X(l) −X(l−1)

∥∥
L
C[0,T ]
p

+ · · ·+
∥∥X(k+1) −X(k)

∥∥
L
C[0,T ]
p

≤ cx0,T,p

(
(TLpp)

l−1/p

((l − 1)!)1/p
+ · · ·+

(TLpp)
k/p

(k!)1/p

)

≤ cx0,T,p

∞∑
i=k

(TLpp)
i/p

(i!)1/p
→k 0.

Therefore there is a limit X in L
C[0,T ]
p (Ω,F ,P) and

E sup
t∈[0,T ]

|Xt|p <∞.

We show that this is our solution. Re-using the computation from step (b)
we get ∥∥∥∥Xt − x0 −

∫ t

0

σ(u,Xu)dBu −
∫ t

0

a(u,Xu)du

∥∥∥∥
Lp

=

∥∥∥∥∥
[
Xt − x0 −

∫ t

0

σ(u,Xu)dBu −
∫ t

0

a(u,Xu)du

]
−
[
X

(k+1)
t − x0 −

∫ t

0

σ(u,X(k)
u )dBu −

∫ t

0

a(u,X(k)
u )du

] ∥∥∥∥
Lp

≤ ‖Xt −X(k+1)
t ‖Lp + Lp

(∫ T

0

E|Xu −X(k)
u |pdu

) 1
p

→ 0

as k →∞. Hence, a.s.,

Xt = x0 −
∫ t

0

σ(u,Xu)dBu +

∫ t

0

a(u,Xu)du.
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(d) By the uniqueness argument for the strong solutions we also get that

P(X
(T1)
t = X

(T2)
t ) = 1

for t ∈ [0,min {T1, T2}] when XT = (XT
t )t∈[0,T ] is the solution constructed

on [0, T ]. Hence we may find a continuous and adapted process X = (Xt)t≥0

such that
P(Xt = X

(n)
t ) = 1 for all t ∈ [0, n].

(e) Now we consider the solved equation and 2 ≤ p < ∞. Similarly as
before we deduce, for t ∈ [0, T ], that∥∥∥∥∥ sup

s∈[0,t]

|Xs|

∥∥∥∥∥
p

≤ |x0|+ αp

(
E
∣∣∣∣∫ t

0

|σ(u,Xu)|2 du
∣∣∣∣p/2
) 1

p

+

(
E
∣∣∣∣∫ t

0

|a(u,Xu)| du
∣∣∣∣p)

1
p

≤ |x0|+ αpKT

(
E
∣∣∣∣∫ t

0

[1 + |Xu|]2du
∣∣∣∣p/2
) 1

p

+

KT

(
E
∣∣∣∣∫ t

0

[1 + |Xu|]du
∣∣∣∣p)

1
p

≤ |x0|+ αpKT

∣∣∣∣∫ t

0

‖1 + |Xu|‖2
pdu

∣∣∣∣1/2 +KT

∫ t

0

‖1 + |Xu|‖pdu

≤ |x0|+KT [αp +
√
T ]

∣∣∣∣∫ t

0

‖1 + |Xu|‖2
pdu

∣∣∣∣1/2 .
Consequently,∥∥∥∥∥1 + sup

s∈[0,t]

|Xs|

∥∥∥∥∥
2

p

≤ 2[|x0|+ 1]2 + 2K2
T [αp +

√
T ]2
∫ t

0

∥∥∥∥∥1 + sup
s∈[0,u]

|Xs|

∥∥∥∥∥
2

p

du

for t ∈ [0, T ] and Gronwall’s lemma gives∥∥∥∥∥1 + sup
s∈[0,T ]

|Xs|

∥∥∥∥∥
2

p

≤ 2[|x0|+ 1]2e2K2
TT [αp+

√
T ]2 .
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Remark 4.3.3. (1) From the above proof it follows that we obtain a Gaus-
sian process in case of σ(t, x) = σ(t) and a(t, x) = a1(t)x + a2(t) with
σ, a1, a2 continuous and bounded as the approximating processes X(k)

are Gaussian and the L2-limit of Gaussian random variables is Gaussian
as well.

(2) From the assumptions of Proposition 4.3.2 we get that

|σ(t, x)|+ |a(t, x)| ≤ sup
t∈[0,T ]

[|σ(t, 0)|+ |a(t, 0)|] +K|x|

which is a standard growth condition that is satisfied in our context
automatically.

4.4 Lévy’s characterization of the Brownian

motion and the Girsanov theorem

The first theorem, Lévy’s characterization of the Brownian motion, is a char-
acterization of the Brownian motion by the quadratic variation. To introduce
the quadratic variation we need

Proposition 4.4.1. Let M = (Mt)t≥0 ∈ Mc,0
loc be a continuous local mar-

tingale starting in zero. Then there exists a continuous and adapted process
〈M〉 = (〈M〉t)t≥0, unique up to indistinguishability, such that

(i) 0 = 〈M〉0 ≤ 〈M〉s ≤ 〈M〉t for all 0 ≤ s ≤ t <∞,

(ii) limn

[∑n
i=1

(
Mtni
−Mtni−1

)2
]

= 〈M〉t in probability for all 0 = tn0 ≤

· · · ≤ tnn = t such that limn supi=1,...,n |tni − tni−1| = 0.

Definition 4.4.2. The process 〈M〉 is called quadratic variation of the local
martingale M .

Proposition 4.4.3. For L = (Lu)u≥0 ∈ Lloc
2 one has that〈∫ ·

0

LudBu

〉
t

=

∫ t

0

L2
udu for t ≥ 0 a.s.
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In particular, we have

Example 4.4.4. For the Brownian motion B = (Bt)t≥0 one has that 〈B〉t =
t, t ≥ 0, a.s.

The converse is true as well:

Proposition 4.4.5 (P. Lévy). Let M = (Mt)t≥0 be a continuous adapted
process such that M0 ≡ 0. Then the following assertions are equivalent:

(i) M is an (Ft)t≥0-Brownian motion.

(ii) M ∈Mc,0
loc and 〈M〉t = t, t ≥ 0, a.s.

Proof. We only have to show that (ii) implies (i). Let

τN(ω) := inf{t ≥ 0 : |Mt(ω)| = N},

and let σk be an increasing sequence of stopping times, with limk σk(ω) =∞,
such that Mσk := Mtχ{t<σk} + Mσkχ{σk≤t} = Mt∧σk is a martingale for all
k ∈ N. Now

E|M τN
t |2 ≤ N2 <∞ for all N = 0, 1, 2, ..., and t ≥ 0,

and M τN is (Ft)t≥0-adapted (see [11, Proposition 2.18 in Chapter 1]). More-
over, for 0 ≤ s ≤ t <∞ (we use E[E[X|Fτ |Fσ] = E[X|Fτ∧σ] which holds for
any integrable X and stopping times τ, σ):

E (Mt∧τN |Fs) = E (E (Mt∧τN |Ft∧τN ) |Fs)
= E (Mt∧τN |Fs∧τN )

= E
(

lim
k→∞

Mt∧σk∧τN |Fs∧τN
)

= lim
k→∞

E (Mt∧σk∧τN |Fs∧τN )

= lim
k→∞

Ms∧σk∧τN

= Ms∧τN ,

where we have used dominated convergence and the optional stopping theo-
rem (sometimes called the optional sampling theorem) (note that s ∧ τN ≤
t ∧ τN ≤ t, for all k ≥ k0). Hence M τN ∈Mc,0

2 . Let

f(x) := eiλx for some λ ∈ R.
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By Itô’s formula for martingales (used in the complex setting which follows
directly from the real setting), which states that for a C2 function g and a
continuous local martingale (Xt)

g(Xt) = g(X0) +

∫ t

0

g′(Xu)dXu +
1

2

∫ t

0

g′′(Xu)d〈X〉u

one has

eiλ(M
τN
t −M

τN
s )χA = χA + χA

∫ t

s

iλeiλ(M
τN
u −M

τN
s )dM τN

u

−λ
2

2
χA

∫ t∧τN

s∧τN
eiλ(M

τN
u −M

τN
s )d〈M τN 〉u

for all A ∈ Fs. Using 〈M τN 〉u = 〈M〉u = u for s∧τN ≤ u ≤ t∧τN and taking
the expected value implies that

Eeiλ(M
τN
t −M

τN
s )χA = P(A)− λ2

2

∫ t∧τN

s∧τN
EeiλM

τN
u −M

τN
s χAdu.

As N →∞ we get by dominated converge

Eeiλ(Mt−Ms)χA = P(A)− λ2

2

∫ t

s

EeiλMu−MsχAdu.

Letting now
H(u) := Eeiλ(Mu−Ms)χA

yields to a continuous and bounded function. Moreover, we have

H(t) = P(A)− λ2

2

∫ t

s

H(u)du

which can be checked by expanding the right-hand side successively to a

series expansion. Hence H(t) = P(A)e−
λ2

2
(t−s). This implies that Mt−Ms is

independent from Fs and that Mt −Ms ∼ N(0, t− s).

Now we turn to our second fundamental theorem:

Proposition 4.4.6 (Girsanov). Let L = (Lt)t≥0 ∈ L2 and assume that the
process (Et)t≥0 defined by

Et := exp

(
−
∫ t

0

LudBu −
1

2

∫ t

0

L2
udu

)



4.4. THEOREMS OF LÉVY AND GIRSANOV 101

is a martingale. Let T > 0 and

dQT := ETdP.

Then (Wt)t≥0 with

Wt := Bt +

∫ t

0

χ[0,T ](u)Ludu

defines a Brownian motion (Wt)t≥0 with respect to (Ω,F , QT , (Ft)t≥0).

Lemma 4.4.7. Let 0 ≤ t ≤ T <∞.

(i) The measures Qt and QT coincide on Ft.

(ii) Assume that Z : Ω → R is FT -measurable such that EQT |Z| < ∞.
Then

EQT (Z|Ft) =
E(ZET |Ft)
Et

a.s.

Proof. (i) For B ∈ Ft one has

QT (B) =

∫
B

ETdP =

∫
B

E(ET |Ft)dP =

∫
B

EtdP = Qt(B)

where we have used that (Et)t≥0 is a martingale.
(ii) We show the assertion only for 0 ≤ Z ≤ c where all terms are defined.

The general case follows from the decomposition Z = Z+−Z− and dominated
convergence. We will show that∫

B

EtEQT (Z|Ft)dP =

∫
B

ZETdP

which follows from∫
B

EtEQT (Z|Ft)dP =

∫
B

EQT (Z|Ft)dQt

=

∫
B

EQT (Z|Ft)dQT

=

∫
B

ZdQT

=

∫
B

ZETdP.
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Proof of Proposition 4.4.6. We only prove the statement for bounded L ∈ L2.

(a) We assume that K ∈ L2 is deterministic and bounded. We will show
that

EQT e
∫ T
0 iKudWu = e−

1
2

∫ T
0 K2

udu. (4.3)

It holds

EQT e
∫ T
0 iKudWu = Ee−

∫ T
0 LudBu− 1

2

∫ T
0 L2

udue
∫ T
0 iKudWu

= Ee−
∫ T
0 LudBu− 1

2

∫ T
0 L2

udue
∫ T
0 iKudBu+

∫ T
0 iKuLudu

= Ee
∫ T
0 (iKu−Lu)dBu− 1

2

∫ T
0 (iKu−Lu)2due−

1
2

∫ T
0 K2

udu

= e−
1
2

∫ T
0 K2

uduEe
∫ T
0 (iKu−Lu)dBu− 1

2

∫ T
0 (iKu−Lu)2du.

We realise that M given by Mt = e
∫ t
0 (iKu−Lu)dBu− 1

2

∫ t
0 (iKu−Lu)2du is a complex-

valued martingale with M0 = 1 so that EMT = 1. This implies (4.3).

(b) Relation (4.3) holds especially for Ku =
∑n

k=1 xkχ(tk−1,tk](u) with
xk ∈ R and 0 < t0 < t1 < ... < tn < T . Then

EQT e
∫ T
0 iKudWu = EQT e

i
∑n
k=1 xk(Wtk

−Wtk−1
)

= e−
1
2

∑n
k=1(xk)2(tk−tk−1).

But this means that w.r.t. QT the vector Wtn −Wtn−1 , ...,Wt1 −Wt0 consists
of independent normal distributed random variables with E(Wtk−Wtk−1

)2 =
tk − tk−1. Hence W is a Brownian motion w.r.t. QT .

(c) In order to see that W is a Brownian motion w.r.t. (Ω,F , QT , (Ft)t≥0)
we first notice that W is (Ft)t≥0-adapted. To show that Wt−Ws is indepen-
dent from Fs w.r.t. QT we write for x, y ∈ R and A ∈ Fs

EQT e
ix(Wt−Ws)+iyχA = EQTEQT [eix(Wt−Ws)+iyχA | Fs]

= EQT e
iyχAEQT [eix(Wt−Ws) | Fs]

= EQT e
iyχAE[eix(Wt−Ws)e−

∫ T
s LudBu− 1

2

∫ T
s L2

udu | Fs].

where we used Lemma 4.4.7 for the last line. Similar to (a) we get

E[eix(Wt−Ws)e−
∫ T
s LudBu− 1

2

∫ T
s L2

udu | Fs] = e−
x2

2
(t−s)E

[
MT

Ms

| Fs
]
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and E
[
MT

Ms
| Fs

]
= 1

Ms
E [MT | Fs] = 1. Consequently,

EQT e
ix(Wt−Ws)+iyχA = EQT e

iyχAe−
x2

2
(t−s)

= (EQT e
iyχA)(EQT e

ix(Wt−Ws)).

An important condition to decide whether (Et)t≥0 is a martingale is
Novikov’s condition.

Proposition 4.4.8. Assume that M = (Mt)t≥0 is a continuous local mar-
tingale with M0 ≡ 0 and T > 0 such that

Ee
1
2
〈M〉T <∞.

Then E = (Et∧T )t≥0 with

Et := eMt− 1
2
〈M〉t

is a martingale.

4.5 Solutions of SDE’s by a transformation

of drift

Now we explain how to solve a SDEs by a transformation of drift.

Proposition 4.5.1 (Transformation of drift). Let σ, a : [0,∞) × R → R be
continuous such that

|σ(t, x)− σ(t, y)|+ |a(t, x)− a(t, y)| ≤ K|x− y|
|σ(t, x)|+ |a(t, x)| ≤ K(1 + |x|)

for all x, y ∈ R and t ≥ 0. Let X = (Xt)t≥0 be the unique strong solution of

dXt = σ(t,Xt)dBt + a(t,Xt)dt

with X0 ≡ x0 ∈ R. Let T > 0 and L = (Lt)t≥0 ∈ L2 be continuous such that

Ee
1
2

∫ T
0 L2

udu <∞
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and let

Wt := Bt +

∫ t

0

Ludu

for t ∈ [0, T ]. Then, under QT with

dQT := ETdP where Et := e−
∫ t
0 LudBu−

1
2

∫ t
0 L

2
udu,

one has that X solves

dXt = σ(t,Xt)dWt + [a(t,Xt)− σ(t,Xt)Lt] dt for t ∈ [0, T ].

What is the philosophy in this case? We wish to solve

dXt = σ(t,Xt)dWt + [a(t,Xt)− σ(t,Xt)Lt] dt for t ∈ [0, T ].

For this purpose we construct a specific Brownian motion W = (Wt)t∈[0,T ]

on an appropriate stochastic basis (Ω,F , QT ; (Ft)t∈[0,T ]) so that this problem
has the solution X = (Xt)t∈[0,T ] which is called weak solution.

Proof of Proposition 4.5.1. By Propositions 4.2.2 and 4.3.2 there is a unique
strong solution X = (Xt)t≥0. Setting

Mt :=

∫ t

0

(−Lu)dBu

we get that (Et)t≥0 is a martingale by Novikov’s condition (Proposition
4.4.8). The Girsanov Theorem (Proposition 4.4.6) gives that (Wt)t∈[0,T ] is
a Brownian motion with respect to QT . And finally (and also a bit formally)

dXt = σ(t,Xt)dBt + a(t,Xt)dt

= σ(t,Xt)(dBt + Ltdt)− σ(t,Xt)Ltdt+ a(t,Xt)dt

= σ(t,Xt)dWt + (a(t,Xt)− σ(t,Xt)Lt)dt.

Example 4.5.2. Let σ(t, x) = x, a ≡ 0, x0 = 1, St = eBt−
t
2 , and

Ee
1
2

∫ T
0 L2

udu <∞.

Then
dSt = StdWt − StLtdt, t ∈ [0, T ], under QT .
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4.6 Weak solutions

In this section we indicate the principle of weak solutions: we do not start
with a stochastic basis, but we construct a particular basis to our problem.
The formal definition is as follows:

Definition 4.6.1. Assume that σ, a : [0,∞) × R → R are measurable. A
weak solution of

dXt = σ(t,Xt)dBt + a(t,Xt)dt with X0 ≡ x0

is a pair (Ω,F ,P, (Ft)t≥0), (Xt,Wt)t≥0, such that

(i) (Ω,F ,P, (Ft)t≥0) satisfies the usual conditions, i.e.

• (Ω,F ,P) is complete,

• all null-sets of F belong to F0,

• the filtration is right-continuous, i.e. Ft =
⋂
ε>0Ft+ε,

(ii) X is continuous and (Ft)t≥0 adapted,

(iii) (Wt)t≥0 is an (Ft)t≥0-Brownian motion,

(iv) Xt = x0 +
∫ t

0
σ(u,Xu)dWu +

∫ t
0
a(u,Xu)du, t ≥ 0, a.s.,

where (σ(u,Xu))u≥0 ∈ Lloc
2 and

∫ t
0
|a(u,Xu(ω))|du <∞ for all ω ∈ Ω and

all t ≥ 0.

Example 4.6.2 (Tanaka). Assume the SDE

dXt = sign(Xt)dBt with X0 = 0

where sign(x) = 1 if x > 0 and sign(x) = −1 if x ≤ 0.

(a) Non-uniqueness of the solution: Assume that (Xt)t≥0 is a solution.
Because ∫ t

0

sign(Xs)
2ds = t
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Lévy’s theorem applies and (Xt)t≥0 is an (Ft)t≥0- Brownian motion. Then
we also get that

(−Xt) =

∫ t

0

[−sign(Xs)]dBs.

Because

E
∫ ∞

0

|sign(−Xs) + sign(Xs)|2ds = 0,

we also have that

(−Xt) =

∫ t

0

[sign(−Xs)]dBs,

so that (−Xt)t≥0 is a solution as well and uniqueness fails.

(b) Existence of a solution: Define

Mt :=

∫ t

0

sign(Bs)dBs.

Again, by Lévy’s theorem, (Mt)t≥0 is an (Ft)t≥0-Brownian motion. We verify
that we have that

Bt =

∫ t

0

sign(Bs)dMs, t ≥ 0, a.s.

We find simple (λNs )s∈[0,t] such that

E
∫ t

0

|λNs − sign(Bs)|2ds→ 0

as N →∞. Then

E
∫ t

0

|λNs sign(Bs)− 1|2ds→ 0

and ∫ t

0

[λNs sign(Bs)]dBs → Bt

in L2 as N →∞. On the other hand,∫ t

0

λNs dMs →
∫ t

0

sign(Bs)dMs
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in L2 as N →∞. Finally, by a direct computation we see that∫ t

0

λNs dMs =

∫ t

0

[λNs sign(Bs)]dBs

as for λNt :=
∑N

k=1 v
N
k−11(tNk−1,t

N
k ](t) we get, a.s.,

∫ t

0

λNs dMs =
N∑
k=1

vNk−1[MtNk
−MtNk−1

]

=
N∑
k=1

vNk−1

∫ tNk

tNk−1

sign(Bs)dBs

=
N∑
k=1

∫ tNk

tNk−1

vNk−1sign(Bs)dBs

=

∫ t

0

[λNs sign(Bs)]dBs.

To explain the usage of weak solutions we also introduce the notion of
path-wise uniqueness:

Definition 4.6.3. The SDE

dXt = σ(t,Xt)dBt + a(t,Xt)dt with X0 ≡ x0,

t ≥ 0, a.s., X0 ≡ x0, satisfies the path-wise uniqueness if any two solutions
with respect to the same stochastic basis and Brownian motion are indistin-
guishable.

The application of this concept consists in

Proposition 4.6.4 (Yamada and Watanabe). The existence of weak solu-
tions together with the path-wise uniqueness implies the existence of strong
solutions.

For more information see [11, Section 5.3].
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4.7 The Cox-Ingersoll-Ross SDE

Now we consider an example that does not fall into the setting we discussed so
far. Instead, we have some kind of boundary problem. Formally, we consider
the Cox-Ingersoll-Ross SDE

dXt = (a− bXt)dt+ σ
√
XtdBt with X0 ≡ x0 > 0 (4.4)

on [0, τ ] where a, σ > 0, b ∈ R, and

τ(ω) := inf {t ≥ 0 : Xt(ω) = 0} .

First we make this formal equation precise:

Definition 4.7.1. A stopping time τ : Ω → [0,∞] and an adapted and
continuous process X = (Xt)t≥0 with Xt(ω) = Xt∧τ(ω)(ω) for all ω ∈ Ω is
called solution of the Cox-Ingersoll-Ross SDE provided that

Xt∧τ =

∫ t∧τ

0

[a− bXs]ds+ σ

∫ t∧τ

0

√
XsdBs

for t ≥ 0 a.s. and Xτ(ω)(ω) = 0 if τ(ω) < ∞ and Xt(ω) > 0 for all
t ∈ [0, τ(ω)).

Proposition 4.7.2. There exists a unique solution to the SDE (4.4).

Idea of the proof. We only give the idea of the construction of the process.
Let 1/n ∈ (0, x0) and find a Lipschitz function σn : R→ R with σn(x) = σ

√
x

whenever x ≥ 1/n. Then the SDE

dXn
t = (a− bXn

t )dt+ σn(Xn
t )dBt with Xn

0 ≡ x0 > 0 (4.5)

has a unique strong solution. For an adapted and continues process X let

τnX := inf{t ≥ 0 : Xt = 1/n} ∈ [0,∞].

By adapting the proof of our uniqueness theorem we can check that
(Xn

t∧τnXn
)t≥0 and (Xm

t∧τnXm
)t≥0 are indistinguishable for 1 ≤ n ≤ m < ∞. Let

Ω0 be a set of measure one such that on Ω0 the trajectories of
(
Xn
t∧τnXn

)
t≥0

and
(
Xm
t∧τnXm

)
t≥0

coincide for 1 ≤ n ≤ m. By construction we have that

τnXn(ω) ≤ τmXm(ω) for ω ∈ Ω0
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and may set

τ(ω) :=

{
limn→∞ τ

n
Xn(ω) : ω ∈ Ω0

∞ : ω 6∈ Ω0

and

Xt(ω) :=

{
limn→∞X

n
t (ω) : ω ∈ Ω0

x0 : ω 6∈ Ω0

.

What we can do in more detail is to study the quantitative behavior of
this equation.

Proposition 4.7.3. One has the following:

(i) If a ≥ σ2

2
, then P(τ =∞) = 1,

(ii) if 0 < a < σ2

2
and b ≥ 0, then P(τ =∞) = 0,

(iii) if 0 < a < σ2

2
and b < 0, then P(τ =∞) ∈ (0, 1).

Proof. For x,M > 0 we let (Xx
t )t≥0 be the solution of the Cox-Ingersoll-

Ross SDE starting in x ≥ 0 and

τxM(ω) := inf {t ≥ 0 : Xx
t (ω) = M} .

(a) Define the scale function

s(x) :=

∫ x

1

e
2by

σ2 y−
2a
σ2 dy.

Then

σ2

2
xs′′(x) + (a− bx)s′(x) = 0 (4.6)

by a computation.
(b) Let 0 < ε < x < M and τxε,M := τxε ∧ τxM . By Itô’s formula

s(Xx
t∧τxε,M

) = s(x) +

∫ t∧τxε,M

0

s′(Xx
s )dXx

s +
1

2

∫ t∧τxε,M

0

s′′(Xx
s )σ2Xx

s ds
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= s(x) +

∫ t∧τxε,M

0

s′(Xx
s )σ
√
Xx
s dBs

+

∫ t∧τxε,M

0

[
(a− bXx

s )s′(Xx
s ) +

1

2
s′′(Xx

s )σ2Xx
s

]
ds

= s(x) +

∫ t∧τxε,M

0

s′(Xx
s )σ
√
Xx
s dBs.

(c) Since Xt∧τxε,M ∈ [ε,M ] for all t ≥ 0 we have that

E
∫ t∧τxε,M

0

s′(Xx
s )2σ2Xx

s ds = E
∣∣∣s(Xx

t∧τxε,M

)
− s(x)

∣∣∣2
≤ 4 sup

y∈[ε,M ]

|s(y)|2

=: c <∞.

Letting t→∞ gives that

E
∫ τxε,M

0

s′(Xx
s )2Xx

s σ
2ds <∞.

Since Xx
s ≥ ε for s ∈ [0, τxε,M ] by definition and since

s′(x) = e
2bx
σ2 x−

2a
σ2 ≥ e−2

|b|M
σ2 M−2 a

σ2 =: d > 0

we get that

E
∫ τxε,M

0

ds <∞

so that Eτxε,M <∞ and τxε,M <∞ a.s.
(d) Now

s(x) = E
(
s(Xx

τxε,M∧t
)−

∫ τxε,M∧t

0

s′(Xx
s )σ
√
Xx
s dBs

)
and the boundedness of the integrand of the stochastic integral on [0, τxε,M ∧t]
yields that

s(x) = Es(Xx
τxε,M∧t

).

By t → ∞, dominated convergence, and the fact that τxε,M is almost surely
finite, we conclude that

s(x) = Es(Xx
τxε,M

) = s(M)P(τxM < τxε ) + s(ε)P(τxM > τxε )
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= s(M)(1− P(τxM > τxε )) + s(ε)P(τxM > τxε )

i.e.

P(τxε < τxM) =
s(M)− s(x)

s(M)− s(ε)
. (4.7)

(e) Now we can prove our assertion.

Case (i): Assume a ≥ σ2

2
and set θ := 2 a

σ2 ≥ 1. Observe that

lim
ε↓0

s(ε) = lim
ε↓0

∫ ε

1

e
2by

σ2 y−
2a
σ2 dy

= − lim
ε↓0

∫ 1

ε

[
e

2by

σ2

]
y−θdy

= −∞.

Hence the from (4.7) we get

lim
ε↓0

P(τxε < τxM) = 0.

Since τxε is monotone in ε we conclude that

P (τx0 < τxM) ≤ P

 ∞⋂
1/N<x

{
τx1
N
< τxM

} = 0.

Letting M →∞ gives τxM(ω) ↑ ∞ so that

P(τx0 <∞) = lim
M↑∞

P(τx0 < τxM) = 0.

Hence P(τx0 =∞) = 1.

Case (ii) and (iii): Our first aim is to show that P(τx0,M < ∞) = 1. We
follow [11, Proposition 5.5.32] and define the so called speed measure for (4.4),
i.e.

m(dy) :=
2dy

s′(y)σ2y
for y ∈ (0,M)

as well as the function

A(x) :=

∫ M

0

G(x, y)m(dy),
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with

G(x, y) :=
(s(x ∧ y)− s(0))(s(M)− s(x ∨ y))

s(M)− s(0)
for x, y ∈ [0,M ].

Obviously,

G(0, y) = 0 = G(M, y) and A(0) = A(M) = 0.

For x ∈ (0,M) we have∫ x

0

G(x, y)m(dy) =
s(M)− s(x)

s(M)− s(0)

∫ x

0

(s(y)− s(0))m(dy)

and ∫ M

x

G(x, y)m(dy) =
s(x)− s(0)

s(M)− s(0)

∫ M

x

(s(M)− s(y))m(dy).

We get

A(x) =
s(M)− s(x)

s(M)− s(0)

∫ x

0

(s(y)− s(0))m(dy)

+
s(x)− s(0)

s(M)− s(0)

∫ M

x

(s(M)− s(y))m(dy)

=
s(M)− s(x)

s(M)− s(0)

∫ x

0

(s(y)− s(0))m(dy)

− s(x)− s(0)

s(M)− s(0)

∫ x

0

(s(M)− s(y))m(dy)

+
s(x)− s(0)

s(M)− s(0)

∫ M

0

(s(M)− s(y))m(dy)

= −
∫ x

0

(s(x)− s(y))m(dy)

+
s(x)− s(0)

s(M)− s(0)

∫ M

0

(s(M)− s(y))m(dy).

Using the notation

z(x) :=
1

s(M)− s(0)

∫ x

0

(s(M)− s(y))m(dy),
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we get

A′(x) = −s′(x)

∫ x

0

2dy

s′(y)σ2y
+ s′(x)z(M)

and

A′′(x) = −s′′(x)

∫ x

0

2dy

s′(y)σ2y
− 2

σ2x
+ s′′(x)z(M).

We use that s solves (4.6) to deduce

σ2

2
xA′′(x) + (a− bx)A′(x)

=
σ2

2
xs′′(x)z(M)− σ2

2
xs′′(x)

∫ x

0

2dy

s′(y)σ2y
− σ2

2
x

2

σ2x

−(a− bx)s′′(x)

∫ x

0

2dy

s′(y)σ2y
− (a− bx)

2

σ2x
+ s′′(x)z(M)

= z(M)

(
σ2

2
xs′′(x) + (a− bx)s′(x)

)
−
∫ x

0

2dy

s′(y)σ2y

(
σ2

2
xs′′(x) + (a− bx)s′(x)

)
− 1

= −1.

By Itô’s formula we get for 0 < ε < x < M that

A(Xx
t∧τxε,M

) = A(x) +

∫ t∧τxε,M

0

A′(Xx
u)σ
√
Xx
udBu

+

∫ t∧τxε,M

0

(
A′(Xx

u)(a− bXu) +
1

2
A′′(Xx

u)σ2Xx
u

)
du

= A(x) +

∫ t∧τxε,M

0

A′(Xx
u)σ
√
Xx
udBu −

∫ t∧τxε,M

0

du.

For 0 < 2a
σ2 < 1 one can show that

E
∫ t∧τxε,M

0

(A′(Xx
u))2σ2Xx

udu <∞.

Therefore, taking the expectation yields

E(t ∧ τxε,M) = A(x)− EA(Xx
t∧τε,M ) ≤ A(x)
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and limit ε ↓ 0 gives

E(t ∧ τx0,M) ≤ A(x)

so that, by t→∞,

Eτx0,M ≤ A(x) <∞

and in particular P(τx0,M <∞) = 1. Since τx0 ∧ τxM <∞ a.s. and the process
can not hit 0 and M at the same time, it holds P(τx0 = τxM) = 0. Hence we
may conclude

lim
N→∞

P(τxM < τx1
N

) = P(τxM < τx0 )

and

lim
N→∞

P(τx1
N
< τxM) = P(τx0 ≤ τxM) = P(τx0 < τxM).

The condition 0 < a < σ2

2
gives that θ = 2 a

σ2 < 1 and

lim
ε↓0

s(ε) = −
∫ 1

0

e2b y
σ2 y−θdy ∈ R

which is denoted by s(0). Hence

s(x) = s(M) lim
N→∞

P(τxM < τx1
N

) + s(0) lim
N→∞

P(τx1
N
< τxM)

= s(M)P(τxM < τx0 ) + s(0)P(τx0 < τxM).

If b ≥ 0, then we have

lim
M→∞

s(M) =∞

so that

lim
M→∞

P(τxM < τx0 ) = 0 and lim
M→∞

P(τxM > τx0 ) = 1

(note that P(τxM = τx0 ) = 0) and

P

(⋃
M>0

{τxM > τx0 }

)
= 1.

Because limM τxM(ω) =∞ for all ω ∈ Ω, this implies

P(τx0 <∞) = 1.
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If b < 0, then we have

lim
M→∞

s(M) =: s(∞) ∈ (0,∞)

and
s(x) = s(∞)P(τx0 =∞) + s(0)P(τx0 <∞),

and P(τx0 =∞) ∈ (0, 1) as well as P(τx0 <∞) ∈ (0, 1).
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4.8 The martingale representation theorem

Let B = (B1, . . . , Bd) be a d-dimensional (standard) Brownian motion on
a complete probability space (Ω,F ,P), i.e. Bi = (Bi

t)t∈[0.T ] are Brownian
motions for i = 1, . . . , n that are independent from each other, meaning that
all families

B1
t11
−B1

t10
, . . . , B1

t1
N1
−B1

t1
N1−1

, . . . , Bd
td1
−Bd

td0
, . . . , Bd

td
Nd
−Bd

td
Nd−1

are independent for 0 = ti0 < · · · < tiN i = T . If we define

Ft := σ((B1
s , . . . B

d
s ), s ∈ [0, t]) ∨ {B ∈ F : P(B) = 0},

then the filtration (Ft) is right-continuous [11, Section 2, Proposition 7.7],
so that we use the stochastic basis (Ω,F ,P, (Ft)t∈[0,T ]) in the following. We
recall

L2 :={
L = (Lu)u∈[0,T ] : L progressively measurable , [L]22 = E

∫ T

0

L2
udu <∞

}
.

Theorem 4.8.1 (Stochastic integral representation). For F ∈ L2(Ω,FT ,P)
there are Lj ∈ L2, j = 1, . . . , d, such that

F = EF +
d∑
j=1

∫ T

0

LjudBu.

Proof. The proof follows from [10, Theorem 56.2] and [18, Lemma V3.1]. We
define

S :=

{
Z ∈ L2(Ω,FT ,P) : Z =

d∑
j=1

∫ T

0

LjudB
j
u, L

j ∈ L2, j = 1, . . . , d

}
.

We will verify our statement by proving that R ⊕ S = L2(Ω,FT ,P). This
follows from proving that for Y ∈ L2(Ω,FT ,P) with EY = 0 and Y ⊥ S one
has Y = 0 a.s.

Step 1: If Kj : [0, T ]→ R is Borel measurable with
∫ T

0
(Kj

u)
2du <∞, we

set

Et(K) := exp

{
d∑
j=1

∫ t

0

Kj
udB

j
u −

1

2

d∑
j=1

∫ t

0

(Kj
u)

2du

}
.
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By the Novikov condition we have that (Et(K))t∈[0,T ] is a martingale. More-
over,

|Et(K)|2 = Et(2K) exp

{
d∑
j=1

∫ t

0

(Kj
u)

2du

}
(4.8)

so that

E|Et(K)|2 = exp

{
d∑
j=1

∫ t

0

(Kj
u)

2du

}
. (4.9)

Our assumption implies that

EET (K)Y = 0 for all K1, . . . , Kd with

∫ T

0

(Kj
u)

2du <∞

because by Itô’s formula one has ET (K)− 1 ∈ S.

Step 2: Let 0 = t0 < t1 < · · · < tn = T and assume that

Kj =
n∑

m=1

αjmχ(tm−1,tm], αjm ∈ R.

Then

ET (K) = exp

(
d∑
j=1

n∑
m=1

αjm(Bj
tm −B

j
tm−1

)− 1

2

d∑
j=1

∫ T

0

(Kj
u)

2du

)
.

Using the σ(Bt1 , . . . , Btn)-measurability of ET (K), we get that

0 = E(ET (K)Y )

= EE
[
ET (K)Y

∣∣σ(Bt1 , . . . , Btn)
]

= E
[
ET (K)E

[
Y
∣∣σ(Bt1 , . . . , Btn)

]]
.

Step 3: We deduce that

E
[
Y
∣∣σ(Bt1 , . . . , Btn)

]
= 0.

To show this, we set 1

g(Bt1 , . . . , Btn) := E
[
Y
∣∣σ(Bt1 , . . . , Btn)

]
1The existence of a Borel function g : (Rd)n → R such that g(Bt1 , . . . , Btn) =

E[Y |σ(Bt1 , . . . , Btn)] follows from the factorization theorem (see [1]).
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and fix ξ1, . . . , ξn ∈ Rd. For z ∈ C we set

f(z) := E

[
exp

(
z

n∑
m=1

〈ξm, Btm −Btm−1〉

)
g(Bt1 , . . . , Btn)

]
.

One can show that f : C → C is holomorphic and on R the function f is
identically 0. By the identity theorem of holomorphic functions, f ≡ 0. But
then especially

E

[
exp

(
i

n∑
m=1

〈αm, Btm −Btm−1〉

)
g(Bt1 , . . . , Btn)

]
= 0

for all α1, . . . , αn ∈ Rd, so that by the uniqueness theorem for the Fourier
transform,

g(Bt1 , . . . , Btn) = 0 a.s.

In fact, for d = 1 the precise argument is as follows: The above equation
implies that∫

Rn
ei

∑n
m=1 αmxmg(x1, x1+x2, . . . , x1+x2+ . . .+xn)

× h(Bt1 ,...,Btn−Btn−1 )(x1, x2, . . . , xn)dx1 · · · dxn ≡ 0

where h(Bt1 ,...,Btn−Btn−1 ) is the density of the law of the random vector
(Bt1 , . . . , Btn −Btn−1) with respect to the Lebesgue measure on Rn. Hence

g(x1, x1+x2, . . . , x1+x2+ . . .+xn)h(Bt1 ,...,Btn−Btn−1 )(x1, x2, . . . , xn) = 0 a.e.

with respect to the Lebesgue measure on Rn and therefore

g(x1, x1+x2, . . . , x1+x2+ . . .+xn) = 0 a.e.

with respect to the Lebesgue measure on Rn.

Step 4: To conclude with Y = 0 a.s. as we proceed as follows: We let

A :=
∞⋃
m=1

⋃
0≤t1<···<tm=T

σ(Bt0 , . . . , Btm)

which is an algebra that generates σ(Bt : t ∈ [0, T ]). According to [7, Lemma
2.1.7] we have that for any ε > 0 and any B ∈ σ(Bt : t ∈ [0, T ]) there exists
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A ∈ A such that P(A∆B) < ε. This remains true if B ∈ σ(Bt : t ∈ [0, T ]) is
replaced by B ∈ FBT . Set Y + := max{Y, 0} and suppose that EY +χB = c > 0
for some B ∈ FBT with B ⊆ {Y ≥ 0}. Then we find a set A ∈ A such that

|E[Y (χA − χB)]| ≤ ‖Y ‖L2(Ω,FBT ,P)P(A∆B)1/2 ≤ c

2
.

But since

EY χA = EY (χA − χB) + EY χB = EY (χA − χB) + EY +χB,

it follows that E[Y χA] > 0, which is a contradiction. The same argument can
be applied to Y −, so that EY χB = 0 for all B ∈ FBT , implying that Y = 0
a.s. Therefore, R⊕ S = L2(Ω,FBT ,P).

The following corollary shows that in this particular setting (called
Wiener space setting) all square integrable martingales can be chosen to
be continuous. This is not true in general.

Corollary 4.8.2. Assume that M = (Mt)t∈[0,T ] ⊆ L2 is a martingale with

respect to (Ft)t∈[0,T ]. Then there exists a modification M̃ = (M̃t)t∈[0,T ] (i.e.

P(Mt = M̃t) = 1 for all t ∈ [0, T ]) such that t 7→ M̃t(ω) is continuous for all
ω ∈ Ω.
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Chapter 5

Backward stochastic differential
equations (BSDEs)

5.1 Introduction

Let T > 0. We have considered SDEs

dXt = a(t,Xt)dt+ σ(t,Xt)dBt, X0 = x.

A solution (in the strong sense) we defined as an adapted process (Xt)t∈[0,T ]

solving the equation

Xt = x+

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, (5.1)

where we assumed that (Ω,F ,P, (Ft)t∈[0,T ]) (satisfying the usual conditions)
and a Brownian motion (Bt)t∈[0,T ] w.r.t. (Ft)t∈[0,T ] are given, also the initial
conditionX0 = x. Could one, instead of the initial conditionX0 = x, demand
a terminal condition XT = ξ ∈ L2? Re-writing this equation would give

Xt = ξ −
∫ T

t

a(s,Xs)ds−
∫ T

t

σ(s,Xs)dBs, t ∈ [0, T ], (5.2)

and XT = ξ. However, equation (5.2) does not have in all cases an adapted
solution. For example, take ξ = 1, a ≡ 0, and σ ≡ 1. This would yield that

Xt = 1−
∫ T

t

dBs = 1 +Bt −BT ,

121
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so that Xt would not be Ft-measurable. Instead of (5.2), we will consider

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ], (5.3)

and call (Y, Z) a solution, if Y = (Yt)t∈[0,T ] and Z = (Zt)t∈[0,T ] are progres-
sively measurable processes satisfying further conditions specified below. In
the above equation ξ is called terminal condition, f generator, and the pair
(ξ, f) the data of the BSDE. So given the data (ξ, f), we look for an adapted
solution (Y, Z).

5.2 Setting

For the terminal condition we use

(Cξ) One has ξ ∈ L2.

For the generator we use the following assumption (Cf ) on the generator

f : [0, T ]× Ω× R× R→ R :

(Cf1) f( · , · , y, z) is progressively measurable for all y, z ∈ R.

(Cf2) There exists an Lf > 0 such that

|f(t, ω, y, z)− f(t, ω, ȳ, z̄)| ≤ Lf (|y − ȳ|+ |z − z̄|)

for all (t, ω) ∈ [0, T ]× Ω and y, ȳ, z, z̄ ∈ R.

(Cf3) E
∫ T

0
f 2(t, 0, 0)dt <∞.

Moreover, we define and recall, respectively:

(i) The space S2 consists of all adapted and continuous processes (Xt)t∈[0,T ]

such that ‖X‖2
S2

:= E sup0≤t≤T |Xt|2 <∞.

(ii) The space L2 consists of all progressively measurable (Xt)t∈[0,T ] such

that [X]22 = E
∫ T

0
X2
t dt <∞.

(iii) For β ≥ 0 and X ∈ L2 we let [X]22,β := E
∫ T

0
X2
t e

βtdt.
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5.3 A priori estimate

Now we prove an a priori estimate, that can be seen as a stability result as
well.

Proposition 5.3.1. Assume that (Cξ), (Cξ̄), (Cf ), and (Cf̄ ) hold for the
data (ξ, f) and (ξ̄, f̄). Let (Y, Z) and (Ȳ , Z̄) be in S2 × L2 and be solutions
to

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ],

Ȳt = ξ̄ +

∫ T

t

f̄(s, Ȳs, Z̄s)ds−
∫ T

t

Z̄sdBs, t ∈ [0, T ],

respectively. Then, for all β ≥ A+ 2Lf̄ + 2L2
f̄

+ 1
2
, where A > 0, it holds that

[Y − Ȳ ]22,β + [Z − Z̄]22,β ≤ 2eβTE
∣∣ξ − ξ̄∣∣2 +

2

A
[f( · , Y·, Z·)− f̄( · , Y·, Z·)]22,β.

Proof. Assume β > 0 and apply Itô’s formula, in order to get

eβT (ξ − ξ̄)2 = eβT (YT − ȲT )2

= eβt(Yt − Ȳt)2

+

∫ T

t

βeβs(Ys − Ȳs)2ds

−
∫ T

t

eβs2(Ys − Ȳs)
[
f(s, Ys, Zs)− f̄(s, Ȳs, Z̄s)

]
ds

+
1

2

∫ T

t

2eβs(Zs − Z̄s)2ds

+2

∫ T

t

eβs(Ys − Ȳs)(Zs − Z̄s)dBs.

We rearrange the terms to get

eβt
∣∣Yt − Ȳt∣∣2 +

∫ T

t

eβs
∣∣Zs − Z̄s∣∣2 ds

= eβT
∣∣ξ − ξ̄∣∣2 − β ∫ T

t

eβs
∣∣Ys − Ȳs∣∣2 ds
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+ 2

∫ T

t

eβs(Ys − Ȳs)
(
f(s, Ys, Zs)− f̄(s, Ȳs, Z̄, s)

)
ds

− 2

∫ T

t

eβs(Ys − Ȳs)(Zs − Z̄s)dBs. (5.4)

Now we estimate the terms of the right-hand side of (5.4). If we let

I := sup
t∈[0,T ]

∣∣∣∣∫ T

t

eβs(Ys − Ȳs)(Zs − Z̄s)dBs

∣∣∣∣ ,
then

EI ≤ C1E
(∫ T

0

|eβs(Ys − Ȳs)(Zs − Z̄s)|2ds
) 1

2

≤ C1E

[(
sup
t

∣∣Yt − Ȳt∣∣)(∫ T

0

e2βs
∣∣Zs − Z̄s∣∣2 ds)1/2

]
≤ C1‖Y − Ȳ ‖S2 [Z − Z̄]2,β <∞

by the Burkholder-Davis-Gundy inequality (Proposition 4.3.1) and the
Cauchy-Schwartz inequality. Therefore, the maximal function of the Itô inte-
gral in (5.4) is integrable, which implies that this Itô integral is a martingale
(see [12, Theorem 7.21, p.196]). Hence we get that

E
∫ T

t

eβs(Ys − Ȳs)(Zs − Z̄s)dBs = 0.

For the second last term in (5.4) we use, for A > 0 and a, b ∈ R,

2ab ≤ Aa2 +
1

A
b2

and ∣∣f̄(s, Ys, Zs)− f̄(s, Ȳs, Z̄s)
∣∣ ≤ Lf̄

(∣∣Ys − Ȳs∣∣+
∣∣Zs − Z̄s∣∣)

in order to get

2eβs
∣∣Ys − Ȳs∣∣ ∣∣f(s, Ys, Zs)− f̄(s, Ȳs, Z̄s)

∣∣
≤ 2eβs

∣∣Ys − Ȳs∣∣ ∣∣f(s, Ys, Zs)− f̄(s, Ys, Zs)
∣∣

+2eβs
∣∣Ys − Ȳs∣∣ ∣∣f̄(s, Ys, Zs)− f̄(s, Ȳs, Z̄s)

∣∣
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≤ Aeβs
∣∣Ys − Ȳs∣∣2 +

1

A
eβs
∣∣f(s, Ys, Zs)− f̄(s, Ys, Zs)

∣∣2
+2Lf̄e

βs
∣∣Ys − Ȳs∣∣2 + 2L2

f̄e
βs
∣∣Ys − Ȳs∣∣2 +

1

2
eβs
∣∣Zs − Z̄s∣∣2 .

Here we used the above inequality with a =
√

2Lf̄
∣∣Ys − Ȳs∣∣ and b =√

1/2
∣∣Zs − Z̄s∣∣ to estimate

2eβsLf̄
∣∣Ys − Ȳs∣∣ ∣∣Zs − Z̄s∣∣ ≤ 2L2

f̄e
βs
∣∣Ys − Ȳs∣∣2 +

1

2
eβs
∣∣Zs − Z̄s∣∣2 .

Hence, for β ≥ A+ 2Lf̄ + 2L2
f̄

+ 1
2
, (5.4) implies that

Eeβt
∣∣Yt − Ȳt∣∣2 +

1

2
E
∫ T

t

eβs
∣∣Zs − Z̄s∣∣2 ds

≤ EeβT
∣∣ξ − ξ̄∣∣2 − 1

2
E
∫ T

t

eβs
∣∣Ys − Ȳs∣∣2 ds

+
1

A
E
∫ T

t

eβs
∣∣f(s, Ys, Zs)− f̄(s, Ys, Zs)

∣∣2 ds.
We move the term with ”−” to the left-hand side and consider the inequality
for t = 0. We derive

[Y − Ȳ ]22,β + [Z − Z̄]22,β ≤ 2eβTE
∣∣ξ − ξ̄∣∣2

+
2

A
[f( · , Y·, Z·)− f̄( · , Y·, Z·)]22,β.

Now we state and prove the fundamental existence and uniqueness theo-
rem for BSDEs:

Theorem 5.3.2. Assume that (Cξ) and (Cg) hold for the data (g, ξ), then

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ], (5.5)

has a solution (Y, Z) which is unique in S2 × L2.
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Proof. We will define a map F : L2 × L2 → L2 × L2 and show that F
is a contraction, i.e. if (Y ,Z), (Ȳ , Z̄) ∈ L2 × L2, (Y, Z) = F (Y ,Z), and
(Ȳ , Z̄) = F (Ȳ , Z̄), then

[Y − Ȳ ]22,β + [Z − Z̄]22,β ≤ c
[
[Y − Ȳ ]22,β + [Z − Z̄]22,β

]
for some constant 0 < c < 1.

(a) Construction of the map F : Let (Y ,Z) ∈ L2×L2. We look for a pair
(Y, Z) = F (Y ,Z) that solves

Yt = ξ +

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

ZsdBs. (5.6)

We get Z from Theorem 4.8.1 about the represenation property on the
Wiener space. For this we let

Mt := E
[
ξ +

∫ T

0

f(s,Ys,Zs)ds
∣∣∣∣Ft] .

Then M = (Mt)t∈[0,T ] is a square-integrable martingale and there exists a
unique Z ∈ L2 such that

Mt = M0 +

∫ t

0

ZsdBs for t ∈ [0, T ] a.s.

Now, letting

Yt := E
[
ξ +

∫ T

t

f(s,Ys,Zs)ds
∣∣∣∣Ft]

we get

Yt = Mt −
∫ t

0

f(s,Ys,Zs)ds

= M0 +

∫ t

0

ZsdBs −
∫ t

0

f(s,Ys,Zs)ds

= M0 +

∫ T

0

ZsdBs −
∫ T

0

f(s,Ys,Zs)ds+

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

ZsdBs

= ξ +

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

ZsdBs.
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Hence, we have
F (Y ,Z) = (Y, Z).

(b) F is a contraction: Let (Y ,Z), (Ȳ , Z̄) ∈ L2 × L2. Then, by the a priori
estimate (assume, for the moment, that Y , Ȳ ∈ S2), for ξ = ξ̄, setting

f0(s, Ys, Zs) := f(s,Ys,Zs)
f̄0(s, Ȳs, Z̄s) := f(s, Ȳs, Z̄s),

(notice that the r.h.s. is not depending on Y, Z, Ȳ , Z̄) and for the solutions
(Y, Z) and (Ȳ , Z̄) we get

[Y − Ȳ ]22,β + [Z − Z̄]22,β ≤
2

A
E
∫ T

0

eβs
∣∣f(s,Ys,Zs)− f(s, Ȳs, Z̄s)

∣∣2 ds
≤

4L2
f

A

[
[Y − Ȳ ]22,β + [Z − Z̄]22,β

]
. (5.7)

Now we choose A large enough so that 4L2
g < A, and then a corresponding

β according to Proposition 5.3.1.

(c) The iteration: Consider the following procedure: Start with Y 0 ≡
0, Z0 ≡ 0 and define (Y k+1, Zk+1) = F (Y k, Zk). Then, because F is a
contraction, there exists (Y, Z) ∈ L2 × L2 such that

(Y k, Zk)→ (Y, Z) in L2 × L2,

provided that Y k ∈ S2 for all k = 1, 2, ....

(d) Y k ∈ S2 and Y ∈ S2: From the construction of the map F we know
that

Yt = Mt −
∫ t

0

f(s,Ys,Zs)ds.

Therefore,

‖Y ‖2
S2

= E sup
t
|Yt|2

≤ 2E sup
0≤t≤T

|Mt|2 + 2E
∣∣∣∣∫ T

0

|f(s,Ys,Zs)|ds
∣∣∣∣2

≤ 8E |MT |2 + 2E
∣∣∣∣∫ T

0

|f(s,Ys,Zs)|ds
∣∣∣∣2
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≤ 16E |YT |2 + 4E
∣∣∣∣∫ T

0

|f(s,Ys,Zs)|ds
∣∣∣∣2

≤ 16Eξ2 + 4T E
∫ T

0

|f(s,Ys,Zs)− f(s, 0, 0) + f(s, 0, 0)|2 ds

≤ 16Eξ2 + 8T E
∫ T

0

[
L2
f

(
Y2
s + Z2

s

)
+ f 2(s, 0, 0)

]
ds

< ∞

where we used Doob’s maximal inequality for p = 2 and the assumptions
Eξ2 <∞ and (Y ,Z) ∈ L2 × L2. This shows that the Yk ∈ S2, but the same
argument also shows that Y ∈ S2 if we use the argument for Y = Y and
Z = Z.

(e) The Uniqueness follows from Proposition 5.3.1 because for ξ = ξ̄ and
g = ḡ we have that

[Y − Ȳ ]22,β + [Z − Z̄]22,β ≤ 2eβTE
∣∣ξ − ξ̄∣∣2 +

2

A
[f( · , Y·, Z·)− f̄( · , Y·, Z·)]22,β

= 0.



Index

(Ft)t≥0-Brownian motion, 15, 42, 44
(Ft)t∈I-Brownian motion, 34
L0: Simple processes, 44
L2, 49
Lloc

2 , 59
Mc

2, 44
var(f, t), 64

adapted, 12
augmentation, 35

backward stochastic differential equa-
tion

a priori estimate, 123
definition, 122
existence, 125

bounded variation, 65
Brownian bridge, 24
Brownian motion, 24, 31, 35
Burkholder-Davis-Gundy, 80

càdlàg, 15
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martingale representation, 116
measurable, 12
modification, 10

natural filtration, 34
Novikov condition, 103

optional time, 37

path-wise uniqueness, 107
Poisson process, 16
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progressively measurable, 12

quadratic variation, 98

reflection principle, 36
right-continuous filtration, 35, 39

stochastic basis, 12
stochastic integral for L0, 44
stochastic integral for L2, 51
stochastic integral for Lloc

2 , 60
stochastic process, 9
stopping time, 37
strong solution, 87
strong uniqueness, 91

theorem of Girsanov, 100
theorem of Lévy, 99

usual conditions, 35

weak solution, 105
Wiener integral, 52

Yamada-Tanaka, 93
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